DOI QR코드

DOI QR Code

Evaluation of the dimensional change of 3D-printed complete denture after post-curing

후경화에 따른 3차원 프린팅 의치의 체적변화

  • Suyeon, Lee (Postgraduate School, College of Dentistry, Chosun University) ;
  • Younghun, Kwak (Postgraduate School, College of Dentistry, Chosun University) ;
  • Eunchul, Park (Postgraduate School, College of Dentistry, Chosun University) ;
  • Heejung, Kim (Department of Prosthodontics, College of Dentistry, Chosun University)
  • 이수연 (조선대학교 치의학전문대학원) ;
  • 곽영훈 (조선대학교 치의학전문대학원) ;
  • 박은철 (조선대학교 치의학전문대학원) ;
  • 김희중 (조선대학교 치과대학 치과보철학교실)
  • Received : 2022.12.13
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

Purpose: The purpose of this study was to assess the dimensional change of 3D-printed dentures after post-curing. Materials and Methods: The upper and lower dentures were designed in Exocad DentalCAD software and exported as STL files. The upper and lower dentures were printed from 10 STL files using a DLP-type dental 3D printer. The printed upper and lower dentures were cleaned, and a scan file was created using a model scanner before and after post-curing. The dimensional change was evaluated by superimposing the scanned denture files before and after post-curing and measuring the distance between measurement points on the denture. SPSS was used for statistics, and the level of significance was 5%. Results: The maxillary denture reduced in size during post-curing, with the most notable color change occurring in the posterior palatal region. The reduction in anteroposterior maxillary denture length (A-D, A-E, A-F), as well as the distance between the first molars on both sides (B-C), was statistically significant. After post-curing, the mandibular denture showed more noticeable color change in the posteriorly buccal and lingual region. The decrease of length on the posterior (A-M, A-D, A-E, A-L, A-H, A-I, H-I) and lingual (J-K, L-M) sides of the denture were statistically significant. Conclusion: There was significant dimensional change in both the length and width of the 3D-printed maxillary and mandibular dentures after post-curing in this experiment. Consequently, it is seemed necessary to develop post-curing techniques and materials that reduce such denture deformation.

목적: 이 연구목적은 3차원 프린팅의치의 후경화후로 인한 의치의 체적변화를 평가하고자하였다. 연구 재료 및 방법: 상·하악 의치를 Exocad DentalCaD 프로그램을 이용하여 디자인하였으며, STL 파일로 추출하였다. DLP 방식의 치과용 3차원 플린터를 이용하여 상·하악 의치 STL파일을 상·하악 각기 10개씩 출력하였다. 출력된 상·하악 의치는 세척하였고, 후경화를 시행하기전과 후에 각 각 모형스캐너를 이용하여 스캔파일을 만들었다. 후경화 전후의 스캔된 의치파일을 중첩하여 변화를 평가하였으며, 의치상의 계측점사이의 거리를 측정하였다. 통계는 SPSS를 이용하였으며, 유의수준은 5%였다. 결과: 상악의치는 후경화 후에 전반적으로 수축하였으며, 후구개부위에서 가장 뚜렷한 변화를 보였다. 상악의치 전후방 (A-D, A-E, A-F)의 길이와 양측제1대구치사이(B-C)의 길이 감소가 통계학적으로 유의성을 보였다. 하악의치는 후경화 후에 전후방의 길이변화보다는 폭경의 변화가 비교적 뚜렷하였는데, 의치후방(A-M, A-D, A-E, A-L, A-H, A-I, H-I)과 설측(J-K, L-M)에서 통계학적으로 유의성있는 길이변화가 관찰되었다. 결론: 이 실험의 결과내에서, 3차원 프린터로 출력되는 상·하악 의치는 후경화 후에 길이와 폭이 모두 변화하였다. 결론적으로, 의치의 변형을 최소화할 수 있는 후경화 방법과 재료의 개발이 필요할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2020년도 조선대학교 치과병원 학술연구비의 지원을 받아 연구되었음.

References

  1. Sa L, Kaiwu L, Shenggui C, Junzhong Y, Yongguang J, Lin W, Li R. 3D printing dental composite resins with sustaining antibacterial ability. J Mater Sci 2019;54:3309-18.
  2. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  3. Alsandi Q, Ikeda M, Arisaka Y, Nikaido T, Tsuchida Y, Sadr A, Yui N, Tagami J. Evaluation of mechanical and physical properties of light and heat polymerized UDMA for DLP 3D printer. Sensors 2021;21:3331. https://doi.org/10.3390/s21010054
  4. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng 2018;143:172-96. https://doi.org/10.1016/j.compositesb.2018.02.012
  5. Kessler A, Hickel R, Reymus M. 3D printing in dentistry-state of the art. Oper Dent 2020;45:30-40. https://doi.org/10.2341/18-229-l
  6. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015; 219:521-9. https://doi.org/10.1038/sj.bdj.2015.914
  7. Hwang HJ, Lee SJ, Park EJ, Yoon HI. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J Prosthet Dent 2019;121:110-7. https://doi.org/10.1016/j.prosdent.2018.02.018
  8. Han H, Cho S. Fabrication of conducting polyacrylate resin solution with polyaniline nanofiber and graphene for conductive 3D printing application. Polymers 2018;10:1003.
  9. Kalberer N, Mehl A, Schimmel M, Muller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent 2019;121: 637-43. https://doi.org/10.1016/j.prosdent.2018.09.001
  10. Lee S, Hong SJ, Paek J, Pae A, Kwon KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont 2019;11: 55-64. https://doi.org/10.4047/jap.2019.11.1.55
  11. Yoon HI, Hwang HJ, Ohkubo C, Han JS, Park EJ. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J Prosthet Dent 2018;120:919-26. https://doi.org/10.1016/j.prosdent.2018.01.027
  12. Tasaka A, Matsunaga S, Odaka K, Ishizakic K, Uedac T, Abe S, Yoshinarid M, Yamashita S, Sakurai K. Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. J Prosthodont Res 2019;63:85-9. https://doi.org/10.1016/j.jpor.2018.08.007
  13. Masri G, Mortada R, Ounsi H, Alharbi N, Boulos P, Salameh Z. Adaptation of complete denture base fabricated by conventional, milling, and 3-D printing techniques: An in vitro study. J Contemp Dent Pract 2020;21:367-71.
  14. Steinmassl O, Offermanns V, Stockl W, Dumfahrt H, Grunert I, Steinmassl PA. In vitro analysis of the fracture resistance of CAD/CAM denture base resins. Materials 2018;11:401.
  15. Bayarsaikhan E, Lim JH, Shin SH, Park KH, Park YB, Lee JH, Kim JE. Effects of post-curing temperature on the mechanical properties and biocompatibility of three-dimensional printed dental resin material. Polymers 2021;13:1180.
  16. Reymus M, Lumkemann N, Stawarczyk B. 3Dprinted material for temporary restorations: Impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent 2019;22: 231-7.
  17. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Degree of conversion and mechanical properties of a BisGMA:TEGDMA composite as a function of the applied radiant exposure. J Biomed Mater Res B Appl Biomater 2008;84:503-9.
  18. dos Santos RL, de Sampaio GA, de Carvalho FG, Pithon MM, Guenes GM, Alves PM. Influence of degree of conversion on the biocompatibility of different composites in vivo. J Adhes Dent 2014;16: 15-20.
  19. Durner J, Debiak M, Burkle A, Hickel R, Reichl FX. Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts. Arch Toxicol 2011;85:143-8.
  20. Jin MC, Yoon HI, Yeo IS, Kim SH, Han JS. The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing. J Prosthet Dent 2020;123:473-82. https://doi.org/10.1016/j.prosdent.2018.12.014
  21. Doh RM, Kim JE, Nam NE, Shin SH, Lim JH, Shim JS. Evaluation of Dimensional Changes during Post-curing of a Three-Dimensionally Printed Denture Base According to the Curing Time and the Time of Removal of the Support Structure: An In Vitro Study. Appl Sci 2021;11:10000.
  22. Mahler DB. Inarticulation of complete dentures processed by the compression molding technique. J Prosthet Dent 1951;1:551-9.  https://doi.org/10.1016/0022-3913(51)90040-6