DOI QR코드

DOI QR Code

La 개질을 통한 Ni-rich LiNi0.9Co0.05Mn0.05O2 양극재의 고도로 안정화된 미세구조 및 우수한 전기화학적 성능

Highly stabilized microstructure and excellent electrochemical performances of Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode via La modification

  • Seung-Hwan, Lee (Department of Materials Science and Engineering, Kangwon National University)
  • 투고 : 2022.10.04
  • 심사 : 2022.11.30
  • 발행 : 2022.12.31

초록

Although the mileage of electric vehicles can be increased based on the excellent energy density of the LiNi0.9Co0.05Mn0.05O2, it is known that the reason for limiting its use is the low lifespan and poor surface stability due to the structural deformation of the LiNi0.9Co0.05Mn0.05O2. To improve the structural stability of LiNi0.9Co0.05Mn0.05O2, electrochemical performance is improved by La coating on the surface. La-modified LiNi0.9Co0.05Mn0.05O2 shows an initial capacity of 210.6 mAh/g, a capacity retention rate of 89.9 % after 50 cycles, and a retention rate of 52.5% at 6.0 C. These are superior performances than the pristine sample, because the structural stability of the LiNi0.9Co0.05Mn0.05O2 cathode is improved by the La coating.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1055979). Following are results of a study on the "Leaders in INdustry-university Cooperation +" Project, supported by the Ministry of Education and National Research Foundation of Korea.

참고문헌

  1. Lv, Y., Cheng, X., Qiang, W., Huang B., 2020, Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping, J. Power Sources. 450, 227718. https://doi.org/10.1016/j.jpowsour.2020.227718
  2. Sim, S. J., Lee, S. H., Jn, B. S., Kim, H. S., 2019, Improving the electrochemical performances using a V-doped Ni-rich NCM cathode, Sci. Rep. 9, 8952. https://doi.org/10.1038/s41598-019-45556-7
  3. Tang, L., Liu, Y., Wei, H., Yan, C., He, Z., Li, Y., Zheng, J., 2021, Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design, J. Energy Chem. 55, 114-123. https://doi.org/10.1016/j.jechem.2020.06.055
  4. Peng, Z., Yang, G., Li, F., Zhu, Z., Liu, Z., 2018, Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping, J. Alloy. Comp. 762,827. https://doi.org/10.1016/j.jallcom.2018.05.226
  5. Hu, G., Shi, Y., Fan, J., Cao, Y., Peng, Z., Zhang, Y., Zhu, F., Sun, Q., Xue, Z., Liu, Y., Du, K., 2020, Improvement in electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathodeby CaCO3 surface coating,, Electrochim. Acta 364, 137127. https://doi.org/10.1016/j.electacta.2020.137127
  6. Lee, S. H., Jin, B. S., Kim, H. S., 2019, Superior Performances of B-doped LiNi0.84Co0.10Mn0.06O2 cathode for advanced LIBs, Sci. Rep. 9, 17541. https://doi.org/10.1038/s41598-019-54115-z
  7. Lee, S. H., Kim, H. S., Jin, B. S., 2019, Recycling of Ni-rich Li(Ni0.8Co0.1Mn0.1)O2 cathode materials by a thermomechanical method, J. Alloy. Comp. 803, 1032. https://doi.org/10.1016/j.jallcom.2019.06.229
  8. Seok, J. W., Lee, J., Rodgers, T., Ko, D. H., Shim, J. H., 2019, Effect of LiPO2F2 Electrolyte Additive on Surface Electrical Properties of LiNi0.6Co0.2Mn0.2O2 Cathode, Trans. Electr. Electron. Mater. 20, 548. https://doi.org/10.1007/s42341-019-00151-5
  9. Lee, S. H., Jin, B. S., Kim, H. S., 2019, Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries, Sci. Rep. 9, 8901. https://doi.org/10.1038/s41598-019-45531-2
  10. Lee, S. H., Park, G. J., Sim, S. J., Jin, B. S., Kim, H. S., 2019, Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating, J. Alloy. Comp. 791, 193. https://doi.org/10.1016/j.jallcom.2019.03.308
  11. Lee, S. H., Kim, K. Y., Yoon, J. R., 2020, Binder-and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors, NPG Asia Materials 12, 28. https://doi.org/10.1038/s41427-020-0204-0
  12. Lee, S. H., Sim, S. J., Kim, H. S., 2020, High performance well-developed single crystal LiNi0.91Co0.06Mn0.03O2 cathode via LiCl-NaCl flux method, Mater. Lett. 270, 127615. https://doi.org/10.1016/j.matlet.2020.127615
  13. Jo, S. J., Hwang, D. Y., Lee, S. H., 2021, Use of Zirconium Dual-Modification on the LiNi0.8Co0.1Mn0.1O2 Cathode for Improved Electrochemical Performances of Lithium-Ion Batteries, ACS Appl. Energy Mater. 4, 3693. https://doi.org/10.1021/acsaem.1c00130
  14. Hwang, D. Y., Sim, S. J., Jin, B. S., Kim, H. S., Lee, S. H., 2021, Suppressed Microcracking and F Penetration of Ni-Rich Layered Cathode via the Combined Effects of Titanium Dioxide Doping and Coating, ACS Appl. Energy Mater. 4, 1743.  https://doi.org/10.1021/acsaem.0c02897