DOI QR코드

DOI QR Code

계면 제어를 기반으로 한 고성능 전고체 전지 연구

Review of interface engineering for high-performance all-solid-state batteries

  • Insu, Hwang (School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Hyeon Jeong, Lee (Division of Chemical Engineering and Bioengineering, Kangwon National University)
  • 투고 : 2022.10.31
  • 심사 : 2022.11.23
  • 발행 : 2022.12.31

초록

This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

키워드

참고문헌

  1. Lu, Y., Zhao, C.-Z., Yuan, H., Cheng, X.-B., Huang, J.-Q., Zhang, Q., 2021, Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Adv. Funct. Mater. 31:18 2009925. https://doi.org/10.1002/adfm.202009925
  2. Kasemchainan, J., Zekoll, S., Spencer Jolly, D., Ning, Z., Hartley, G. O., Marrow, J., Bruce, P. G., 2019, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Nat. Mater. 18:10 1105-1111. https://doi.org/10.1038/s41563-019-0438-9
  3. Ning, Z., Jolly, D. S., Li, G., De Meyere, R., Pu, S. D., Chen, Y., Kasemchainan, J., Ihli, J., Gong, C., Liu, B., Melvin, D., Bonnin, A., Magdysyuk, O., Adamson, P., Hartley, G.O., Monroe, C. W., Marrow, T. J., Bruce, P. G., 2021, Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells, Nat. Mater. 20:8 1121-1129. https://doi.org/10.1038/s41563-021-00967-8
  4. Li, G., Monroe, C. W, 2019, Dendrite nucleation in lithium-conductive ceramics, Phys. Chem. Chem. Phys. 21:36 20354-20359. https://doi.org/10.1039/c9cp03884a
  5. Sharafi, A., Haslam, C. G., Kerns, R. D., Wolfenstine, J., Sakamoto, J., 2017, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte, J. Mater. Chem. A., 5:40 21491-21504. https://doi.org/10.1039/C7TA06790A
  6. Effat, M. B., Liu, J., Lu, Z., Wan, T. H., Curcio, A., Ciucci, F., 2020, Stability, Elastic Properties, and the Li Transport Mechanism of the Protonated and Fluorinated Antiperovskite Lithium Conductors, ACS Appl. Mater. Interfaces, 12:49 55011-55022. https://doi.org/10.1021/acsami.0c17975
  7. Emly, A., Kioupakis, E., Van der Ven, A., 2020, Synthesis of the Metastable Cubic Phase of Li2OHCl by a Mechanochemical Method, Inorg. Chem.. 59:17 11901-11904. https://doi.org/10.1021/acs.inorgchem.0c01631
  8. Wang, F., Evans, H. A., Kim, K., Yin, L., Li, Y., Tsai, P. C., Ping.-C, Liu, J., Lapidus, S. H., Brown, C. M., Siegel,. D. J., Chiang, Y. M., 2020, Dynamics of Hydroxyl Anions Promotes Lithium Ion Conduction in Antiperovskite Li2OHCl, Chem. Mater., 32:19 8481-8491. https://doi.org/10.1021/acs.chemmater.0c02602
  9. Zhao, Y., & Daemen, L. L., 2012, Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 134:36 15042-15047. https://doi.org/10.1021/ja305709z
  10. Yamamoto, T., Shiba, H., Mitsukuchi, N., Sugumar, M. K., Motoyama, M., Iriyama, Y., 2020, Synthesis of the Metastable Cubic Phase of Li2OHCl by a Mechanochemical Method, Inorg. Chem.. 59:17 11901-11904. https://doi.org/10.1021/acs.inorgchem.0c01631
  11. Kim, K., Siegel, D. J., 2019, Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes, J. Mater. Chem. A, 7:7 3216-3227. https://doi.org/10.1039/C8TA10989C
  12. Lee, H. J., Darminto, B., Narayanan, S., Diaz-Lopez, M., Xiao, A. W., Chart, Y., Lee, J. H., Dawson, J. A., Pasta, M., 2022, Li-ion conductivity in Li 2 OHCl 1- x Br x solid electrolytes: grains, grain boundaries and interfaces, J. Mater. Chem. A, 10, 11574-11586. https://doi.org/10.1039/D2TA01462A
  13. Deng, Z., Ou, M., Wan, J., Li, S., Li, Y., Zhang, Y., Deng, Z., Xu, J., Qiu, Y., Liu, Y., Fang, C., Li, Q., Huang, L., Zhu, J., Han, S., Han, J., Zhao, Y., 2020, Local structural changes and inductive effects on ion conduction in antiperovskite solid electrolytes, Chem. Mater., 32:20 8827-8835. https://doi.org/10.1021/acs.chemmater.0c02173
  14. Sagotra, A. K., Chu, D., Cazorla, C., 2019, Influence of lattice dynamics on lithium-ion conductivity: A first-principles study, Phys. Rev. Mater., 3:3 035405. https://doi.org/10.1103/PhysRevMaterials.3.035405
  15. Xiao, Y., Turcheniuk, K., Narla, A., Song, A. Y., Ren, X., Magasinski, A., Jain, A., Huang, S., Lee H., Yushin, G., 2021, Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries, Nat. Mater., 20:7, 984-990. https://doi.org/10.1038/s41563-021-00943-2
  16. Doux, J. M., Yang, Y., Tan, D. H., Nguyen, H., Wu, E. A., Wang, X., Banerjee, A., Meng, Y. S., 2020, Pressure effects on sulfide electrolytes for all solid-state batteries, J. Mater. Chem. A,. 8:10 5049-5055. https://doi.org/10.1039/c9ta12889a
  17. Dawson, J. A., Canepa, P., Famprikis, T., Masquelier, C., Islam, M. S., 2018, Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries, J. Am. Chem. Soc., 140:1 362-368. https://doi.org/10.1021/jacs.7b10593
  18. Li, S., Jiang, Z., Han, J., Xu, Z., Wang, C., Huang, H., Yu, C., Lee, S.-.J., Pianetta, P., Ohldag, H., Qiu, J., Lee, J.-S., Lin, F., Zhao, K., Liu, Y., 2020, Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides, Nat. Commun., 11:1, 1-9. https://doi.org/10.1038/s41467-019-13993-7
  19. Koerver, R., Aygün, I., Leichtweiss, T., Dietrich, C., Zhang, W., Binder, J. O., Hartmann, P., Zeier, W. G., Janek, J., 2017, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29:13 5574-5582. https://doi.org/10.1021/acs.chemmater.7b00931
  20. Doerrer, C., Capone, I., Narayanan, S., Liu, J., Grovenor, C. R., Pasta, M., Grant, P. S., 2021, High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries, ACS Appl. Mater. Interfaces, 13:31 37809-37815. https://doi.org/10.1021/acsami.1c07952
  21. Lee, H. J., Liu, X., Chart, Y., Tang, P., Bae, J. G., Narayanan, S., Lee, J. H., Potter, R. J., Sun, Y., Pasta, M., 2022, LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries, Nano Lett. 22:18 7477-7483. https://doi.org/10.1021/acs.nanolett.2c02426
  22. Lee, H. J., Brown, Z., Zhao, Y., Fawdon, J., Song, W., Lee, J. H., Ihli, J., Pasta, M., 2021, Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase, Chem. Mater. 33:4 1238-1248. https://doi.org/10.1021/acs.chemmater.0c04014