DOI QR코드

DOI QR Code

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis

동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구

  • Yang, Eui-Kyu (Infra Engineering Team, GS E&C) ;
  • Yu, Sang-Hwa ( CEO, SALT Eng) ;
  • Kim, Dongchan (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Jongkwan (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Ha, Ik-Soo (Dept. of Civil Engrg., Kyungnam Univ.) ;
  • Han, Jin-Tae (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.)
  • 양의규 (GS건설(주) 인프라ENG팀 ) ;
  • 유상화 (쏠트이엔지 ) ;
  • 김동찬 (한국건설기술연구원 지반연구본부) ;
  • 김종관 (한국건설기술연구원 지반연구본부) ;
  • 하익수 (경남대학교 건설시스템공학과) ;
  • 한진태 (한국건설기술연구원 지반연구본부)
  • Received : 2022.11.03
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

본 논문에서는 유한차분해석 프로그램인 FLAC을 이용하여 사질토 지반을 지지하는 지하연속벽을 모델링 하고, 내진해석을 수행하였다. 그리고 수치해석 결과를 동일한 조건에서 수행된 원심모형실험 결과와 비교하여, 흙막이 구조물의 내진해석을 위한 수치 모델링의 적정성을 검증하였다. 전반적으로 벽체에 발생한 모멘트 분포도가 매우 유사하였고, 지하연속벽의 상단과 배면지반에서 산정한 가속도의 최대값이 약 5%이내의 차이를 보이는 것으로 나타났다. 검증된 모델을 활용하여 다양한 지반조건과 굴착조건, 그리고 입력하중 조건에서 동적 수치해석 변수연구를 수행하였다. 지진 중 가시설 벽체와 지보재에 발생한 최대 응력을 굴착 중 발생한 최대 응력과 비교하여, 내진설계가 필요한 흙막이 가시설 조건을 개략적으로 선정하였다. 토사지반을 지지하는 흙막이 벽체는 재현주기 100년의 지진하중에 의해 벽체 모멘트가 최대 17%까지 증가하였고, 특히 느슨한 토사층에 위치한 지보재는 최대 32%까지 축력이 증가하여 구조설계를 위한 내진해석이 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발(20220164-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. ITASCA Consulting Group (2021), FLAC 8.1 Users manual: Dynamic analysis. 
  2. Kim Jae-Min (2009), "Seismic Design of Underground Structures-Chapter 4 Earthquake Response Analysis of Underground Structures", Earthquake Engineering Society of Korea, The 25th Technical Class, pp.107-197. 
  3. Kuhlemeyer, R. L. and Lysmer, J. (1973), "Finite Element Method Accuracy for Wave Propagation Problems", J. Soil Mech. & Foundations, Div. ASCE, 99(SM5), pp.421-427  https://doi.org/10.1061/JSFEAQ.0001885
  4. Ministry of Land, Infrastructure and Transport (2022), Korea Design Standard 21 10 00. 
  5. Ministry of Land, Infrastructure and Transport (2022), Korea Design Standard 21 30 00. 
  6. Okamoto, S., Tamura, C., Kato, K., and Hamada, M. (1973), "Behaviors of Submerged Tunnels during Earthquakes". Proceedings of the Fifth World Conference on Earthquake Engineering, Vol.1 Rome Italy, pp. 544-553. 
  7. Park, D., Shin, J.H., and Yun, S.U. (2010b), "Seismic Analysis of Tunnel in Transverse Direction Part I: Estimation of Seismic Tunnel Response via Method of Seismic Displacement", J. of the Korean Geotechnical Society, Vol.26, No.6, pp.57-70. 
  8. Park, D.H., Shin, J.H., and Yun, S.U. (2010a), "Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis", J. of the Korean Geotechnical Society, Vol.26, No.6, pp.71-85. 
  9. Standards Australia (2002), Australian/New Zealand Standard 1170.0: 2002 Structural design actions Part 0: General principles. 
  10. Yang, EuiKyu, Yu, SangHwa, Kim, JongKwan, Kim, DongChan, Kim, SeokJung, and Han, JinTae (2021), "Numerical Evaluation of Dynamic behavior of Retaining Structure in a Deep Excavation", J. of the Korean Geotechnical Society, Vol.37, No.12, pp.89-105. 
  11. Yoon, Jong-Ku, Kim, Dong-Soo, and You, Je-Nam (2003), "Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures", J. of the Korean Geotechnical society, Vol 19, No.4, pp.211-221. 
  12. You, Kwang-Ho and Kim, Young-Jin (2018), "A Preliminary Numerical Analysis Study on the Seismic Stability of a Building and Underground Structure by Using SSI", J. of Korean Tunnelling and Underground Space Association, Vol.20, No.1, pp.23-38.  https://doi.org/10.9711/KTAJ.2018.20.1.023
  13. Yun, Jong Seok, Han, Jin-Tae, Kim, Jong-Kwan, Kim, Dongchan, Kim, Dookie, and Choo, Yun Wook (2022), "Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test", J. of the Korean Geotechnical Society, Vol.38, No.11, pp.119-135.