DOI QR코드

DOI QR Code

Sensitivity Analysis of Drought Impact Factors Using a Structural Equation Model and Bayesian Networks

구조방정식모형과 베이지안 네트워크를 활용한 가뭄 영향인자의 민감도 분석

  • 김지은 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김민지 (한양대학교 대학원 스마트시티공학과) ;
  • 유지영 (한양대학교(ERICA) 공학기술연구소) ;
  • 정성원 (한국건설기술연구원 수자원하천연구본부) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2021.11.22
  • Accepted : 2021.12.28
  • Published : 2022.02.01

Abstract

Drought occurs extensively over a long period and causes great socio-economic damage. Since drought risk consists of social, environmental, physical, and economic factors along with meteorological and hydrological factors, it is important to quantitatively identify their impacts on drought risk. This study investigated the relationship among drought hazard, vulnerability, response capacity, and risk in Chungcheongbuk-do using a structural equation model and evaluated their impacts on drought risk using Bayesian networks. We also performed sensitivity analysis to investigate how the factors change drought risk. Overall results showed that Chungju-si had the highest risk of drought. The risk was calculated as the largest even when the hazard and response capacity were changed. However, when the vulnerability was changed, Eumseong-gun had the greatest risk. The sensitivity analysis showed that Jeungpyeong-gun had the highest sensitivity, and Jecheon-si, Eumseong-gun, and Okcheon-gun had highest individual sensitivities with hazard, vulnerability, and response capacity, respectively. This study concluded that it is possible to identify impact factors on drought risk using regional characteristics, and to prepare appropriate drought countermeasures considering regional drought risk.

가뭄은 장기간에 걸쳐 광범위하게 발생하며, 사회·경제적으로도 큰 피해를 발생시킨다. 가뭄 위험도는 기상학적 및 수문학적 요소와 더불어 사회적, 환경적, 물리적 및 경제적 요소로 이루어져 있기 때문에, 가뭄 위험도에 대한 영향을 정량적으로 파악하는 것이 중요하다. 본 연구에서는 충청북도를 대상으로 구조방정식모형을 이용하여 가뭄 노출성, 취약성, 대응능력 및 위험도 사이의 영향 관계를 파악하고, 베이지안 네트워크를 적용하여 가뭄 위험도에 대한 영향을 평가하였다. 또한, 가뭄 위험도 평가 인자별 민감도 분석을 통해 가뭄 위험도의 변화 정도를 분석하였다. 그 결과 과거 가뭄 위험도가 가장 큰 지역은 충주시로, 노출성 및 대응능력을 변화시켰을 때에도 가장 크게 산정되었다. 다만, 취약성을 변화시켰을 때에는 음성군이 위험도가 가장 큰 것으로 나타났다. 위험도에 대한 영향인자들의 민감도 분석을 실시한 결과 증평군이 민감도가 가장 컸으며, 노출성, 취약성 및 대응능력에서 제천시, 음성군, 옥천군이 민감도가 크게 나타났다. 이러한 결과를 통해 가뭄 위험도 및 가뭄 위험도에 대한 영향인자를 확인하였으며, 영향인자별 지역의 특성을 고려한 가뭄 대책 마련이 가능하다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단(No. 2020R1A2C1012919) 및 행정안전부 극한재난대응기반기술개발사업(2020-MOIS33-006)의 지원을 받아 수행되었습니다. 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

References

  1. Barbero, R., Abatzoglou, J. T., Steel, E. A. and Larkin, N. K. (2014). "Modeling very large-fire occurrences over the continental United States from weather and climate forcing." Environmental Research Letters, Vol. 9, No. 12, 124009. https://doi.org/10.1088/1748-9326/9/12/124009
  2. Hosseini, S. and Barker, K. (2016). "A bayesian network model for resilience-based supplier selection." International Journal of Production Economics, Vol. 180, pp. 68-87. https://doi.org/10.1016/j.ijpe.2016.07.007
  3. Jung, W. S., Kim, S. E. and Kim, Y. D. (2021 ). "Analysis of influential factors of cyanobacteria in the mainstream of Nakdong river using random forest." Journal of Wetlands Research, Vol. 23, No. 1, pp. 27-34 (in Korean). https://doi.org/10.17663/JWR.2021.23.1.27
  4. Kim, D. W., Yoo, J. Y., Son, H. J. and Kim, T. W. (2021). "Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do." Journal of Korea Water Resources Association, KWRA, Vol. 54, No. 3, pp. 145-156 (in Korean). https://doi.org/10.3741/JKWRA.2021.54.3.145
  5. Kim, J. E., Park, J. Y., Lee, J. H. and Kim, T. W. (2019). "Socioeconomic vulnerability assessment of drought using principal component analysis and entropy method." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 6, pp. 441-449 (in Korean). https://doi.org/10.3741/JKWRA.2019.52.6.441
  6. Kim, Y. T. and Lee, S. J. (2015). "Utilization of R program for the partial least square model: Comparison of SmartPLS and R." Journal of Digital Convergence, Vol. 13, No. 12, pp. 117-124 (in Korean). https://doi.org/10.14400/JDC.2015.13.12.117
  7. Lee, S. I., Son, C. S. and Lee, H. R. (2020). "Impact of meteorological and farm input cost factors for onion yield: focusing on Panel regression analysis and Bayesian network model." Journal of Rural Development, Vol. 43, No. 2, pp. 1-28 (in Korean). https://doi.org/10.36464/JRD.2020.43.2.001
  8. Marin, P. G., Julio, C. J., Arturo, R. T. D. and Jose, V. N. D. (2018). "Drought and spatiotemporal variability of forest fires across Mexico." Chinese Geographical Science, Vol. 28, pp. 25-37. https://doi.org/10.1007/s11769-017-0928-0
  9. Mihunov, V. V. and Lam, N. S. (2020). "Modeling the dynamics of drought resilience in South-Central United States using a Bayesian Network." Applied Geography, Vol. 120, 102224. https://doi.org/10.1016/j.apgeog.2020.102224
  10. Mun, Y. S., Nam, W. H., Yang, M. H., Shin, J. H., Jeon, M. G., Kim, T. G., Lee, S. Y. and Lee, K. Y. (2021 ). "Evaluation of agricultural drought disaster vulnerability using analytic hierarchy process (AHP) and entropy weighting method." Journal of The Korean Society of Agricultural Engineers, Vol. 63, No. 3, pp. 13-26 (in Korean). https://doi.org/10.5389/KSAE.2021.63.3.013
  11. Nogueira, J. M. P., Rambal, S., Barbosa, J. P. R. A. D. and Mouillot, F. (2017). "Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: Sensitivity to drought metrics and global remote-sensing fire products." Climate, Vol. 5, No. 2, 42. https://doi.org/10.3390/cli5020042
  12. Sahana, V., Mondal, A. and Sreekumar, P. (2021). "Drought vulnerability and risk assessment in India: Sensitivity analysis and comparison of aggregation techniques." Journal of Environmental Management, Vol. 299, 113689.
  13. Sun, E. J. (2015). "A study on calling pattern according to major among university students using Bayesian Network." Business Management Research, Vol. 8, No. 1, pp. 41-56 (in Korean). https://doi.org/10.5430/bmr.v8n1p41
  14. United Nations Convention to Combat Desertification (UNCCD) (2019). Drought resilience, adaptation and management policy framework: supporting technical guidelines. UNCCD, Bonn, Germany.
  15. Urbieta, I. R., Zavala, G., Bedia, J., Gutierrez, J. M., San MiguelAyanz, J., Camia, A., Keeley, J. E. and Moreno, J. M. (2015). "Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and pacific western USA." Environmental Research Letters, Vol. 10, 114013. https://doi.org/10.1088/1748-9326/10/11/114013
  16. Ye, L., Chung, S. W., Lee, H. S., Yoon, S. W. and Jeong, H. Y. (2009). "Sensitivity analysis of climate factors on runoff and soil losses in Daecheong reservoir watershed using SWAT." Journal of Korean Society on Water Environment, Vol. 25, No. 1, pp. 7-17 (in Korean).
  17. Yoo, J. Y., Kim, J. G., Han, J. W. and Kim, T. W. (2021). "Impact assessment between heatwave and drought based on PLS-SEM." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 41, No. 2, pp. 113-121 (in Korean). https://doi.org/10.12652/KSCE.2021.41.2.0113
  18. Yoo, J. Y., Kim, J. Y., Kwon, H. H. and Kim, T. W. (2014). "Sensitivity assessment of meteorological drought index using Bayesian network." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, pp. 1787-1796 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1787