DOI QR코드

DOI QR Code

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information

실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구

  • 김종진 (영남대학교 도시공학과) ;
  • 정연식 (영남대학교 도시공학과)
  • Received : 2021.05.20
  • Accepted : 2021.06.17
  • Published : 2022.02.01

Abstract

In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

최근 높은 스마트폰 보급율과 ITS (intelligent transportation systems) 인프라 확충 등 정보통신기술(information and communications technology, ICT) 이용 활성화로 실시간 교통정보의 수집원이 증가하였다. 이렇게 다양하게 수집되는 실시간 교통정보의 정확도는 VDS(vehicle detection system), DSRC (dedicated short-range communications), GPS (global positioning system) probe와 같은 다양한 교통정보 수집원별 시공간 혹은 교통상황 등 다양한 환경에 따라 다르게 나타날 수 있다. 본 연구의 목적은 이질적 교통정보가 동시에 수집될 경우, 실시간 교통정보의 정확도를 향상시키기 위한 융합 전략의 제시에 있다. 이를 위해 고속국도(892.2 km, 227개 링크), 일반국도(937.0 km, 2,074개 링크)를 대상으로 주행 조사를 실시하였으며, 해당 링크 및 시간대에 probe 차량 5대의 평균 통행속도는 실시간 교통정보 수집원별(VDS or DSRC, GPS-based A, B) 정확도 평가의 기준 혹은 참값으로 활용되었다. 결과적으로 제시된 융합 전략에 대한 정확도 개선 효과는 일반국도에서 1개 수집원을 제외하고 모두 통계적으로 유의한 것으로 나타났으며, 향후 다양한 기관으로부터 서비스되는 실시간 교통정보가 동시에 연계되는 환경에서 보다 정확한 교통정보 서비스의 가능성을 확인하였다.

Keywords

Acknowledgement

This work was supported by the 2021 Yeungnam University research grant.

References

  1. Bhaskar, A., Chung, E. and Dumont, A. G. (2011). "Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks." Computer-Aided Civil and Infrastructure Engineering, Vol. 26, No. 6, pp. 433-450. https://doi.org/10.1111/j.1467-8667.2010.00697.x
  2. Chen, C., Skabardonis, A. and Varaiya, P. (2004). "Systematic identification of freeway bottlenecks." Transportation Research Record, Vol. 1867, No. 1, pp. 46-52. https://doi.org/10.3141/1867-06
  3. Choi, K. C. and Chung, Y. S. (2002). "A data fusion algorithm for estimating link travel time." Journal of Intelligent Transportation Systems, Vol. 7, No. 3-4, pp. 235-260. https://doi.org/10.1080/713643719
  4. Douglas Robertson, H., Hummer, J. E., Nelson, D. C. and Institute of Transportation Engineers. (1994). Manual of transportation engineering studies, Prentice Hall, Englewood Cliffs, N.J., United States.
  5. El Faouzi, N. E., Klein, L. A. and De Mouzon, O. (2009). "Improving travel time estimates from inductive loop and toll collection data with dempster-shafer data fusion." Transportation Research Record, Vol. 2129, No. 1, pp. 73-80. https://doi.org/10.3141/2129-09
  6. Feiqe, B., Margiotta, C., Margiotta, R. and Turner, S. (2004). Traffic data quality measurement, Final report, FHWA-JPO-05-001, United States.
  7. He, S., Zhang, J., Cheng, Y., Wan, X. and Ran, B. (2016). "Freeway multisensor data fusion approach integrating data from cellphone probes and fixed sensors." Journal of Sensors, Vol. 2016, No. 7269382.
  8. ITS National Transport Information Center (2020). Available at: https://www.its.go.kr/map/traffic (Accessed: July 28, 2020).
  9. Kim, S. H., Lim, K. W. and Lee, Y. G. (2005). "Estimation algorithm based on point and interval detection data over the national highway section." Journal of Korean Society of Transportation, Vol. 23, No. 5, pp. 135-146 (in Korean).
  10. Kong, Q. J., Li, Z., Chen, Y. and Liu, Y. (2009). "An approach to urban traffic state estimation by fusing multisource information." IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 3, pp. 499-511. https://doi.org/10.1109/TITS.2009.2026308
  11. Lee, Y. I., Kim, S. H. and Yoon, J. H. (2005). "Multi-step ahead link travel time prediction using data fusion." Journal of Korean Society of Transportation, Vol. 23, No. 4, pp. 71-79 (in Korean).
  12. Liu, K., Cui, M. Y., Cao, P. and Wang, J. B. (2016). "Iterative bayesian estimation of travel times on urban arterials: Fusing loop detector and probe vehicle data." Plos One, Vol. 11, No. 6, pp. e0158123. https://doi.org/10.1371/journal.pone.0158123
  13. Lomax, T., Turner, S., Eisele, B., Schrank, D., Geng, L. and Shollar, B. (2012). Refining the real-timed urban mobility report, UTCM 11-06-73, Texas. United States.
  14. Oppenlander, J. C. (1976). "Sample size determination for travel time and delay studies." Traffic Engineering, Vol. 46, No. 9, pp. 25-28.
  15. Quiroga, C. A. and Bullock, D. (1998). "Determination of sample sizes for travel time studies." Institute of Transportation Engineers Journal, Vol. 68, pp. 92-98.
  16. Schroeder, B. J., Cunningham, C. M., Findley, D. J., Hummer, J. E. and Foyle, R. S. (2010). Manual of transportation engineering studies, 2nd edition, Institute of Transportation Engineers, Washington, D.C., United States.
  17. Shin, K. W., Shim, S. W., Choi, K. C. and Kim, S. H. (2014). "Expressway travel time prediction using k-nearest neighborhood." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, pp. 1873-1879 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1873
  18. Song, T. J. (2019). "Recurrent congestion impact based on spatiotemporally historic congested information - case study: Separating collision-induced congestion." KSCE Journal of Civil Engineering, KSCE, Vol. 23, No. 11, pp. 4875-4885. https://doi.org/10.1007/s12205-019-1896-y
  19. Soriguera, F. and Robuste, F. (2011). "Highway travel time accurate measurement and short-term prediction using multiple data sources." Transportmetrica, Vol. 7, No. 1, pp. 85-109. https://doi.org/10.1080/18128600903244651
  20. Xia, Y., Li, X. and Shan, Z. (2013). "Parallelized fusion on multisensor transportation data: A case study in cyberits." International Journal of Intelligent Systems, Vol. 28, No. 6, pp. 540-564. https://doi.org/10.1002/int.21592
  21. Zhang, J., He, S., Wang, W. and Zhan, F. (2015). "Accuracy analysis of freeway traffic speed estimation based on the integration of cellular probe system and loop detectors." Journal of Intelligent Transportation Systems, Vol. 19, No. 4, pp. 411-426. https://doi.org/10.1080/15472450.2014.1000456
  22. Zhang, X. and Chen, M. (2015). "Determining reference speed for urban arterials using gps-based speed data." Proceedings of the Transportation Research Board 94th Annual Meeting, Washington DC, United States.
  23. Zhu, L., Guo, F., Polak, J. W. and Krishnan, R. (2018). "Urban link travel time estimation using traffic states-based data fusion." IET Intelligent Transport Systems, Vol. 12, No. 7, pp. 651-663. https://doi.org/10.1049/iet-its.2017.0116