DOI QR코드

DOI QR Code

Experimental study on fracture behavior of SCC pavement slab containing crumb rubber under cyclic loading

  • Wang, Jiajia (College of Civil and Transportation Engineering, Hohai University) ;
  • Chen, Xudong (College of Civil and Transportation Engineering, Hohai University) ;
  • Wu, Chaoguo (College of Civil and Transportation Engineering, Hohai University) ;
  • Shi, Zhenxiang (College of Civil and Transportation Engineering, Hohai University) ;
  • Cheng, Xiyuan (College of Civil and Transportation Engineering, Hohai University)
  • 투고 : 2020.02.06
  • 심사 : 2022.01.11
  • 발행 : 2022.01.25

초록

The increase in waste tires has brought serious environmental problems. Using waste tires rubber particles as aggregate in concrete can reduce pollution and decrease the usage of natural aggregate. The paper describes an investigation on flexural bearing capacity of self-compacting concrete (SCC) pavement slabs containing crumb rubber. Cyclic loading tests with different stress ratios and loading frequencies are carried out on SCC pavement slabs containing crumb rubber. Based on Paris Law and test data, the fatigue life of SCC pavement slab containing crumb rubber is discussed, and a revised mathematical model is established to predict the fatigue life of SCC pavement slab containing crumb rubber. The model applies to different stress ratios and loading frequencies. The fatigue life of SCC pavement slab containing crumb rubber is affected by the stress ratio and loading frequency. The fatigue life increases with the increase of stress ratio and loading frequency. Real-time acoustic emission (AE) signals in the SCC pavement slab containing crumb rubber under cyclic loading are measured, and the characteristics of crack propagation in the SCC pavement slab containing crumb rubber under different stress ratios and loading frequencies are compared. The AE signals provide abundant information of fracture process zone and crack propagation. The variation of AE ringing count, energy and b-value show that the fracture process of SCC pavement slab containing crumb rubber is divided into three stages.

키워드

과제정보

The research is based upon the work supported by the National Natural Science Foundation of China (Grant No. 51979090), Natural Science Foundation for Excellent Young Scholars of Jiangsu Province (Grant No. BK20190075) and State Key Laboratory of High-Performance Civil (Grant No. 2019CEM002).

참고문헌

  1. Adamu, M., Mohammed, B.S., Shafiq, N. and Liew, M.S. (2018), "Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica", Int. J. Pave. Eng., 1-8. https://doi.org/10.1080/10298436.2018.1547825.
  2. Assaggaf, R.A., Ali, M.R., Al-Dulaijan, S.U. and Maslehuddin, M. (2021), "Properties of concrete with untreated and treated crumb rubber-A review", J. Mater. Res. Tech., 11. https://doi.org/10.1016/j.jmrt.2021.02.019.
  3. AASHTO. (2012), AASHTO LRFD Bridge Design Specifications, Washington, DC, USA.
  4. Berkovits, A. and Fang, D. (1995), "Study of fatigue crack characteristics by acoustic emission", Eng. Fract. Mech., 51(3), 401-16. https://doi.org/10.1016/0013-7944(94)00274-L.
  5. Blackman, B.R.K., Kinloch, A.J., Rodriguez-Sanchez, F.S. and Teo, W.S. (2012), "The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading", Int. J. Solid. Struct., 49(13), 1434-1452. https://doi.org/10.1016/j.ijsolstr.2012.02.022.
  6. Colombo, I.S., Main, I.G. and Forde, M.C. (2003), "Assessing damage of reinforced concrete beam using "b-value" analysis of acoustic emission signals", J. Mater. Civil Eng., 15(3), 280-286. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280).
  7. Chen, X.D., Wu, S.X. and Zhou, J.K. (2013), "Experimental study and analytical formulation of mechanical behavior of concrete", Constr. Build. Mater., 47(10), 662-670. https://doi.org/10.1016/j.conbuildmat.2013.05.041.
  8. Chen, X.D., Wu, S.X. and Zhou, J.K. (2014), "Strength values of cementitious materials in bending and tension test methods", J. Mater. Civil Eng., 26(3), 484-490. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000846.
  9. Dowling, N.E. (1999), "Mechanical behavior of materials/engineering methods for deformation, fracture, and fatigue N.E. dowling", Int. J. Fatig., 19(96), 85.
  10. Gutenberg, B. and Richter, CF. (1944), "Frequency of earthquakes in California", Bull. Seismol. Soc. Am., 34(4), 185-188. https://doi.org/10.1785/BSSA0340040185.
  11. Gupta, T., Siddique, S., Sharma, R.K. and Chaudhary, S. (2021), "Investigating mechanical properties and durability of concrete containing recycled rubber ash and fibers", J. Mater. Cycl. Waste Manag., 23(3), 1048-1057. https://doi.org/10.1007/s10163-021-01192-w.
  12. Hornung, G. (2009), "Fracture-based method to determine the flexural load capacity of concrete slabs", Ph.D. Dissertation of Philosophy. https://doi.org/10.1080/14680629.2010.9690280.
  13. Hou, Y., Ji, X. and Su, X. (2019), "Mechanical properties and strength criteria of cement-stabilised recycled concrete aggregate", Int. J. Pave. Eng., 20(3), 339-348. https://doi.org/10.1080/10298436.2017.1293266.
  14. Hui, Y. (2013), "Causes and prevention measures of cement concrete pavement early cracking", Transportation Standardization.
  15. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  16. Lindley, T.C., Palmer, I.G. and Richards, C.E. (1978), "Acoustic emission monitoring of fatigue crack growth", Mater. Sci. Eng., 32(1), 1-15. https://doi.org/10.1016/0025-5416(78)90206-9.
  17. Linhu, Y. (2007), "Experimental study on bending strength of crumb rubber concrete for pavement", Indust. Constr., 37(9), 97-99. https://doi.org/10.1007/s10870-007-9222-9.
  18. Lockner, D. (1993), "The role of acoustic emission in the study of rock fracture", Int. J. Rock Mech. Min. Sci. Geomech. Abstr, 30(7), 883-899. https://doi.org/10.1016/0148-9062(93)90041-B.
  19. Li, S., Chen, X. and Zhang, J. (2021), "Acoustic emission characteristics in deterioration behavior of dam concrete under post-peak cyclic test", Constr. Build. Mater., 292(1), 123324. https://doi.org/10.1016/j.conbuildmat.2021.123324.
  20. Mubaraki, M. and Sallam, H.E.M. (2018), "Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen", Int. J. Pave. Eng., 1-13. https://doi.org/10.1080/10298436.2018.1555332.
  21. Mohammed, B.S., Adamu, M. and Liew, M.S. (2018), "Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques", Case Stud. Constr. Mater., 8, 380-391. https://doi.org/10.1016/j.cscm.2018.03.004.
  22. Modarres, A., Hesami, S., Soltaninejad, M. and Madani, H. (2016), "Application of coal waste in sustainable roller compacted concrete pavement-environmental and technical assessment", Int. J. Pave. Eng., 1-14. https://doi.org/10.1080/10298436.2016.1205747.
  23. Main, I.G., Meredith, P.G. and Jones, C. (1989), "A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics", Geophys. J. Royal Astron. Soc., 96(1), 131-138. https://doi.org/10.1111/j.1365-246X.1989.tb05255.x.
  24. Maode, Y., Shaobo, B., Kun, X. and Yuyao, H. (2007), "Pavement crack detection and analysis for high-grade highway", Int. Conf. Elect. Meas. Instru., 4-458. https://doi.org/10.1109/ICEMI.2007.4351202.
  25. Nguyen-Tat, T., Narintsoa, R. and Jean-Paul, B. (2018), "Characterization of damage in concrete beams under bending with Acoustic Emission Technique (AET)", Constr. Build. Mater., 187, 487-500. https://doi.org/10.1016/j.conbuildmat.2018.07.217.
  26. Paris, P. and Erdogan, F. (1963), "A critical analysis of crack propagation laws", Transac. ASME, 85(4), 528-533. https://doi.org/10.1115/1.3656900.
  27. Pascoe, J.A., Alderliesten, R.C. and Benedictus, R. (2017), "On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds", Int. J. Fatig., 97, 162-176. https://doi.org/10.1016/j.ijfatigue.2016.12.033.
  28. Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.
  29. Rogers, L. (2017), Acoustic Emission Techniques and Application. Encyclopedia of Maritime and Offshore Engineering, John Wiley and Sons.
  30. Roman, K. and Landis, E.N. (2018), "Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete", Constr. Build. Mater., 176, 531-538. https://doi.org/10.1016/j.conbuildmat.2018.05.039.
  31. Sukontasukkul, P. and Chaikaew, C. (2006), "Properties of concrete pedestrian block mixed with crumb rubber", Constr. Build. Mater., 20(7), 450-457. https://doi.org/10.1016/j.conbuildmat.2005.01.040.
  32. Sinclair, A., Connors, D. and Formby, C. (1977), "Acoustic emission analysis during fatigue crack growth in steel", Mater. Sci. Eng., 28(2), 263-273. https://doi.org/10.1016/0025-5416(77)90180-X.
  33. Subramaniam, K.V., O'Neil, E., Popovics, J.S. and Shah, S.P. (2000), "Flexural fatigue of concrete: experiments and theoretical model", J. Eng. Mech., 126(9), 891-898. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(891)
  34. Shiotani, T., Yuyama, S., Li, Z.W. and Ohtsu, M. (2001), "Application of AE improved b-value to quantitative evaluation of fracture process in concrete materials", J. Acoust. Emis., 19, 118-133.
  35. Shiotani, T., Luo, X., Haya, H. and Ohtsu, M. (2007), "Damage quantification for concrete structures by improved b-value analysis of AE, in: Carpinteri, Lacidogna (Eds.)", Earthq. Acoust. Emis., 19, 181-189.
  36. Turatsinze, A., Measson, M. and Faure, J.P. (2016), "Rubberised concrete: from laboratory findings to field experiment validation", Int. J. Pave. Eng., 1-10. https://doi.org/10.1080/10298436.2016.1215688.
  37. Tabatabaee, H.A. and Bahia, H.U. (2014), "Establishing use of asphalt binder cracking tests for prevention of pavement cracking", Road Mater. Pave. Des., 15, 279-299. https://doi.org/10.1080/14680629.2014.927949.
  38. Taha, M.M.R., El-Dieb, A.S., El-Wahab, M.A.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
  39. Turatsinze, A., Measson, M. and Faure, J.P. (2016), "Rubberised concrete: from laboratory findings to field experiment validation", Int. J. Pave. Eng., 1-10. https://doi.org/10.1080/10298436.2016.1215688.
  40. Wei, Y., Gao, X., Wang, F. and Zhong, Y. (2017), "Nonlinear strain distribution in a field-instrumented concrete pavement slab in response to environmental effects", Road Mater. Pave. Des., 1-14. https://doi.org/10.1080/14680629.2017.1395353.
  41. Wu, Y., Zhou, X., Gao, Y., Zhang, L. and Yang, J. (2019), "Effect of soil variability on bearing capacity accounting for nonstationary characteristics of undrained shear strength", Comput. Geotech., 110, 199-210. https://doi.org/10.1016/j.compgeo.2019.02.003.
  42. Wang, Y., Chen, S., Ge, L., Zhou, L. and Hu, H. (2018), "Analysis of dynamic tensile process of fiber reinforced concrete by acoustic emission technique", J. Wuhan Univ. Tech. Mater. Sci. Ed., 33(5), 1129-1139. https://doi.org/10.1007/s11595-018-1945-2.
  43. Wang, J., Chen, X., Bu, J. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.
  44. Y, Ou, Mills, J.E., Yan, Z. and Youssf, O. (2021), "Performance of crumb rubber concrete composite-deck slabs in 4-pointbending", J. Build. Eng., 40, 102695. https://doi.org/10.1016/j.jobe.2021.102695.
  45. Zhu, X., Chen, X., Liu, S., Li, S., Xuan, W. and Chen, Y. (2018), "Experimental study on flexural fatigue performance of rubberised concrete for pavement", Int. J. Pave. Eng., 1029-8436. https://doi.org/10.1080/10298436.2018.1521971.
  46. Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Strength, modulus of elasticity, and brittleness index of rubberised concrete", J. Mater. Civil Eng., 20(11), 692-699. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692).
  47. Zhu, X., Chen, X., Lu, J. and Fan, X. (2019), "Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC", Comput. Concrete, 24(6), 527-539. https://doi.org/10.12989/cac.2019.24.6.527.