DOI QR코드

DOI QR Code

Underwater mobile communication scheme based on the direct sequence spread spectrum transmission using Doppler estimation and its sea trial results with the pseudo-moving transmission

도플러 추정을 적용한 직접수열 대역확산 전송 기반 수중 이동통신 방법 및 가상 이동신호를 이용한 해상시험 결과

  • Kim, Seung-Geun (Ocean System Engineering Research Division, Korea Research Institute of Ships & Coean Engineering(KRISO))
  • Received : 2021.10.12
  • Accepted : 2021.11.17
  • Published : 2022.01.31

Abstract

This paper presents a Doppler shift estimation method and signal processing schemes for Direct Sequence Spread Spectrum (DSSS) transmission to overcome the Doppler shift due to the moving of the underwater communication unit. The proposed method estimates a Doppler shift via 2 step procedures using the preamble with the two 64-length Frank sequences which has a good self-correlation characteristic and is insensitive to the Doppler shift. Furthermore, a packet of DSSS underwater mobile communication and a RAKE receiver are designed using the proposed Doppler shift estimation method. Due to the modulation scheme of the designed DSSS underwater mobile communication using Differential-Quadrature Phase Shift Keying (DQPSK) for the data symbol transmission, the RAKE receiver dose not need a phase tracking and easily makes coherent signals among the combining RAKE branches. The designed RAKE receiving scheme including the proposed Doppler shift estimation method successfully decides information data using the DSSS signal transmitted from the pseudo-moving transmitter with velocity upto about 17.5 m/s.

본 논문에서는 수중통신 장치가 수중에서 이동시 발생하는 도플러(Doppler) 편이를 극복하기 위한 도플러 편이 추정방법과 직접수열 확산대역 전송의 신호처리 방법을 제시한다. 제안한 방법은 도플러 편이에 강인하고, 자기 상관 특성이 우수한 64길이의 Frank 신호열을 두 번 반복하는 프리앰블을 사용하여 2단계로 도플러 편이를 추정한다. 또한, 제안한 방법을 직접수열 대역확산 전송을 사용하는 수중통신방식에 적용하여 수중이동통신용 패킷 설계와 RAKE 수신기를 설계한다. 설계한 확산대역 수중이동통신 변조방식은 데이터 심볼을 Differential-Quadrature Phase Shift Keying(DQPSK) 변조하여 수신시 위상추적이 필요 없고, RAKE 수신기에서 동위상 결합이 용이하게 할 수 있는 장점이 있다. 제안한 도플러 편이 추정방법을 포함하는 RAKE 수신방법은 약 17.5 m/s의 이동속도까지 가상으로 이동하는 송신기로부터 수신한 직접수열 대역 확산 신호를 성공적으로 수신한다.

Keywords

Acknowledgement

본 연구는 해양수산부 재원으로 해양수산과학기술진흥원이 지원하는 "수중광역 이동통신 시스템 기술개발"에 의해 수행되었음(1525010926).

References

  1. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels : Propagation models and statistial characterization," IEEE Commun. Mag. 47, 84-89 (2009). https://doi.org/10.1109/MCOM.2009.4752682
  2. L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, "Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication," IEEE J. Ocean. Eng. 26, 586-593 (2001). https://doi.org/10.1109/48.972098
  3. T. C. Yang and W. Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3633-3647 (2008).
  4. B. Sherlock, J. A. Neasham, and C. C. Tsimenidis, "Spread-spectrum techniques for bio-friendly underwater acoustic communications," IEEE Access, 6, 4506-4520, (2018). https://doi.org/10.1109/access.2018.2790478
  5. J. W. Han, K. M Kim, Y. J. Yun, H. U. Mun, S. Y. Chun, and K. Son, "Sea trial results of the direct sequence spread spectrum underwater acoustic communication in the East Sea" (in Korean), J. Acoust. Soc. Kr. 31, 441-448 (2012). https://doi.org/10.7776/ASK.2012.31.7.441
  6. H. I. Ra, J. H. An, C. H. Youn, K. M. Kim, and I. S. Kim, "Sea trial results of long range underwater acoustic communication based on direct sequence spread spectrum transmission in the East Sea" (in Korean), J. Acoust. Soc. Kr. 40, 304-313 (2021).
  7. B. Sharif, J. Neasham, O. R. Hinton, and A. E. Adams, "A computationally efficient Doppler compensation system for underwater acoustic communications," J. IEEE Ocean Eng. 25, 52- 61 (2000). https://doi.org/10.1109/48.820736
  8. S. Zhou and Z. Wang, OFDM for Underwater Acoustic Communications (John Wiley & Sons, New York, 2014), Chap. 6.
  9. J. G. Proakis and M. Salehi, Digital Communications - 4th Ed (McGraw Hill, New York, 2008), Chap. 5.
  10. U. Mangali and A. D'Andrea, Synchronization Techniques for Digital Receivers (Plenum Press, New York, 1997), Chap. 3.
  11. P. Z. Peebles Jr., Radar Principles (John Wiley & Sons, New York, 1998), Chap. 7.