DOI QR코드

DOI QR Code

A preliminary study of sound quality evaluation of cochlear implant users

인공와우 사용자의 심리음향적 음질평가 예비연구

  • 방정화 (한림국제대학원대학교 청각언어치료학과, 한림국제대학원대학교 청각언어연구소) ;
  • 오수희 (한림국제대학원대학교 청각언어치료학과, 한림국제대학원대학교 청각언어연구소)
  • Received : 2021.12.13
  • Accepted : 2022.01.21
  • Published : 2022.01.31

Abstract

Sound quality evaluation is one of the psychoacoustic methods to measure subjective judgements for sound color. The purpose of this study is to investigate sound quality benefits of bimodal users by comparing sound quality scores between bimodal hearing condition and unilateral cochlear implant(CI) condition as a preliminary study. Thirteen bimodal users and seven unilateral CI users were participated in this study. Audiologists performed pure tone and speech audiometry and measured functional gain and real-ear insertion gain. Subjective assessment of sound quality was followed with four sounds including violin sound, male and female voices, and refrigerator noise. Participants judged the sound quality with six sound quality index. Bimodal users showed mean 0.8 points more sound quality improvements in bimodal condition than unilateral CI condition. Group comparison between bimodal and unilateral CI users showed no differences. A follow-up study of sound quality tools and methods should be considered to evaluate subjective bimodal benefits of cochlear implant users.

음질평가는 물리적 음향 자극에 대해 주관적으로 지각되는 음색을 평가한다는 측면에서 심리음향학적 측정과 관련이 있다. 본 논문은 인공와우 사용자의 음질평가를 위한 예비연구로서 바이모달 인공와우 사용자를 대상으로 음질평가를 시행하고 인공와우만 착용했을 때와 바이모달을 착용했을 때의 음질평가 차이를 파악하고자 하였다. 총 13명의 바이모달 인공와우 사용자와 7명의 편측 인공와우 사용자가 연구에 참여하였고 순음 및 어음 청력검사, 보청기 기능이득과 실이삽입이득을 측정하였다. 음질평가에서는 바이올린소리, 남자와 여자 노래소리, 냉장고 소음의 4개 음향자극을 방음실에서 들려주고 6개 음질평가 항목에 대해 0에서 10까지의 척도로 표시하도록 하였다. 검사결과 바이모달 사용자는 편측 인공와우만 착용했을 때보다 바이모달을 착용했을 때 음질평가 5개 항목에서 0.8점 높았고, 바이모달 사용자와 편측 인공와우 사용자 그룹간 비교에서는 두 그룹 사이에 차이를 보이지 않았다. 주관적 측면의 바이모달 혜택 측정을 위해서 좀 더 체계적인 음질평가 도구와 방법에 대한 후속 연구가 필요할 것으로 생각된다.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (2019S1A5A 8038153).

References

  1. J. E. Preminger and D. J. V. Tasell, "Quantifying the relation between speech quality and speech intelligibility," J. Speech. Lang. Hear. Res. 38, 714-725 (1995). https://doi.org/10.1044/jshr.3803.714
  2. A. Gabrielsson, "Dimension analyses of perceived sound quality of sound-reproducing systems," Scandinavian. J. Psychol. 20, 159-169 (1979). https://doi.org/10.1111/j.1467-9450.1979.tb00697.x
  3. H. Fastl, Psycho-acoustics and Sound Quality. In Communication Acoustics (Springer, Berlin, Heidelberg, 2005), pp.139-162.
  4. S. Kuwano, S. Namba, A. Schick, H. Hoege, H. Fastl, T. Filippou, M. Florentine, and H. Muesch, "The timbre and annoyance of auditory warning signals in different countries," Proc. INTERNOISE, 1-9 (2000).
  5. H. Fastl, "Neutralizing the meaning of sound for sound quality evaluations," Proc. ICA. 1-2 (2001).
  6. C. C. Dunn, E. A. Walker, J. Oleson, M. Kenworthy, T. Van Voorst, J. B. Tomblin. M. Hanson, and B. J. Gantz, "Longitudinal speech perception and language performance in pediatric cochlear implant users: the effect of age at implantation," Ear. Hear. 35, 148 (2014). https://doi.org/10.1097/AUD.0b013e3182a4a8f0
  7. M. F. Dorman, S. C. Natale, A. M. Butts, D. M. Zeitler, and M. L. Carlson, "The sound quality of cochlear implants: Studies with single-sided deaf patients," Otol. Neurotol. 38, e268-e273 (2017). https://doi.org/10.1097/MAO.0000000000001449
  8. M. W. Canfarotta, M. T. Dillon, C. A. Buchman, , E. Buss, B. P. O'Connell, M. A. Rooth, E. R. King, H. C. Pillsbury, O. F. Adunka, and K. D. Brown, "Long-term influence of electrode array length on speech recognition in cochlear implant users," Laryngo. 131, 892-897 (2020).
  9. A.T. Roy, C. Carver, P. Jiradejvong, and C. J. Limb, "Musical sound quality in cochlear implant users: A comparison in bass frequency perception between fine structure processing and high-definition continuous interleaved sampling strategies," Ear. Hear. 36, 582-590 (2015). https://doi.org/10.1097/AUD.0000000000000170
  10. C. M. Sucher and H. J. McDermott, "Bimodal stimulation: Benefits for music perception and sound quality," Cochlear. Implants. Int, 10, 96-99 (2009). https://doi.org/10.1002/cii.398
  11. C. Boex, L. Baud, G. Cosendai, A. Sigrist, M. I. Kos, and M. Pelizzone, "Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing," J. Assoc. Res. Otolaryngol. 7, 110-124 (2006). https://doi.org/10.1007/s10162-005-0027-2
  12. N. T. Jiam, M. S. Pearl, C. Carver, and C. J. Limb, "Flat-Panel CT imaging for individualized pitch mapping in cochlear implant users," Otol. Neurotol. 37, 672-679 (2016). https://doi.org/10.1097/mao.0000000000001060
  13. F. G. Zeng, "Temporal pitch in electric hearing," Hear. Res. 174, 101-106 (2002). https://doi.org/10.1016/S0378-5955(02)00644-5
  14. A. Illg, M. Bojanowicz, A. Lesinski-Schiedat, T. Lenarz, and A. Buchner, A, "Evaluation of the bimodal benefit in a large cohort of cochlear implant subjects using a contralateral hearing aid," Otol. Neurotol. 35, e240-e244 (2014). https://doi.org/10.1097/MAO.0000000000000529
  15. K. D. Brown and T. J. Balkany, "Benefits of bilateral cochlear implantation: a review," Curr. Opin. Otolaryngol. Head. Neck. Surg. 15, 315-318 (2007). https://doi.org/10.1097/MOO.0b013e3282ef3d3e
  16. M. C. Flynn and T. Schmidtke, "Benefits of bimodal stimulation for adults with a cochlear implant," Int. Congr. Ser. 1273, 227-30. (2004). https://doi.org/10.1016/j.ics.2004.08.040
  17. T. Y. C. Ching, E. van Wanrooy, M. Hill, and P. Incerti, "Per-formance in children with hearing aids or cochlear implants: bilateral stimulation and binaural hearing," Int. J. Audiol. 45, S108-112 (2006).
  18. E. C. Schafer, A. M. Amlani, A. Seibold, and P. L. Shattuck, "A meta-analytic comparison of binaural benefits between bilateral cochlear implants and bimodal stimulation," J. Am. Acad. Audiol. 18, 760-762 (2007). https://doi.org/10.3766/jaaa.18.9.5
  19. M. C. Van Loon, C. Smits, C. F. Smit, E. F. Hensen, and P. Merkus, "Cochlear implantation in adults with asymmetric hearing loss: benefits of bimodal stimulation," Otol. Neurotol. 38, e100-e106 (2017). https://doi.org/10.1097/mao.0000000000001418
  20. J. L. Vroegop, J. G. Dingemanse, M. P. van der Schroeff, and A. Goedegebure, "Comparing the effect of different hearing aid fitting methods in bimodal cochlear implant users," Am. J. Audiol. 28, 1-10 (2018).
  21. P. Avan, F. Giraudet, and B. Buki, "Importance of binaural hearing," Audiol. Neurootol. 20, 3-6 (2015). https://doi.org/10.1159/000380741
  22. P. Senn, M. Kompis, M, Vischer, and R. Haeusler, "Minimum audible angle, just noticeable interaural differences and speech intelligibility with bilateral cochlear implants using clinical speech processors," Audiol. Neurootol. 10, 342-352 (2005). https://doi.org/10.1159/000087351
  23. J. M, Gaylor, G. Raman, M. Chung, J. Lee, M. Rao, J. Lau, and D. S. Poe, "Cochlear implantation in adults: a systematic review and meta-analysis," JAMA Otolaryngol. Head Neck Surg. 139, 265-272 (2013). https://doi.org/10.1001/jamaoto.2013.1744
  24. P. E. Riley, D. S. Ruhl, M. Camacho, and A. M. Tolisano, "Music appreciation after cochlear implantation in adult patients: a systematic review," Otolaryngol. Head. Neck. Surg. 158, 1002-1010 (2018). https://doi.org/10.1177/0194599818760559
  25. C. Prevoteau, S. Y. Chen, and A. K. Lalwani, "Music enjoyment with cochlear implantation," Auris. Nasus. Larynx. 45, 895-902 (2018). https://doi.org/10.1016/j.anl.2017.11.008
  26. G. Dritsakis, R. M. van Besouw, P. Kitterick, and C. A. Verschuur, "A music-related quality of life measure to guide music rehabilitation for adult cochlear implant users," Am. J. Audiol. 26, 268-282 (2017). https://doi.org/10.1044/2017_AJA-16-0120
  27. G. Dritsakis, R. M. van Besouw, and A. O' Meara, "Impact of music on the quality of life of cochlear implant users: a focus group study," Cochlear Implants Int. 18, 207-215 (2017). https://doi.org/10.1080/14670100.2017.1303892
  28. K. H. Arehart, J. M. Kates, and M. C. Anderson, "Effects of noise, nonlinear processing, and linear filtering on perceived music quality," Int. J. Audiol. 50, 177-190 (2011). https://doi.org/10.3109/14992027.2010.539273
  29. V. Looi, H. McDermott, C. McKay, and L. Hickson, "Comparisons of quality ratings for music by cochlear implant and hearing aid users," Ear. hear, 28, 59S-61S (2007). https://doi.org/10.1097/aud.0b013e31803150cb
  30. Y.-Y. Kong, and L. D. Braida, "Cross-frequency integration for consonant and vowel identification in bimodal hearing," J. Speech. Lang. Hear. Res. 54, 959-980 (2011). https://doi.org/10.1044/1092-4388(2010/10-0197)
  31. Z. M. Smith, B. Delgutte, and A. J. Oxenham, "Chimaeric sounds reveal dichotomies in auditory perception," Nature, 416, 87-90 (2002). https://doi.org/10.1038/416087a
  32. H. McDermott and K. Henshall, "The use of frequency compression by cochlear implant recipients with postoperative acoustic hearing," J. Am. Acad. Audiol. 21, 380-389 (2010). https://doi.org/10.3766/jaaa.21.6.3
  33. J. L. Vroegop, N. C. Homans, M. P. van der Schroeff, and A. Goedegebure, "Comparing two hearing aid fitting algorithms for bimodal cochlear implant users," Ear. Hear. 40, 98-106 (2019). https://doi.org/10.1097/AUD.0000000000000597
  34. S. Gatehouse and W. Noble, "The speech, spatial and qualities of hearing scale (SSQ)," Int. J. Audiol. 43, 85-99 (2004). https://doi.org/10.1080/14992020400050014
  35. R. English, K. Plant, M. Maciejczyk, and R. Cowan, "Fitting recommendations and clinical benefit associated with use of the NAL-NL2 hearing-aid prescription in Nucleus cochlear implant recipients," Int. J. Audiol. 55, S45-S50 (2016). https://doi.org/10.3109/14992027.2015.1133936
  36. L. C. E. Veugen, J. Chalupper, A. F. M . Snik, A. J. van Opstal, and L. H. M . Mens "Matching automatic gain control across devices in bimodal cochlear implant users" Ear. Hear. 37, 260-270 (2016). https://doi.org/10.1097/AUD.0000000000000260
  37. A. Gabrielsson, B. N. Schenkman, and B. Hagerman, "The effects of different frequency responses on sound quality judgments and speech intelligibility," J. Speech. Lang. Hear. Res. 31, 166-177 (1988). https://doi.org/10.1044/jshr.3102.166
  38. M. F. Dorman, R. H. Gifford, A. J. Spahr, and S. A. McKarns "The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies," Audiol. Neurotol. 13, 105-112 (2008). https://doi.org/10.1159/000111782
  39. Y. Cai, F. Zhao, and Y. Zheng, "Development and validation of a Chinese music quality rating test," Int. J. Audiol. 52, 587-595 (2013). https://doi.org/10.3109/14992027.2013.797609
  40. V. Looi, H. McDermott, C. McKay, and L. Hickson, "Comparisons of quality ratings for music by cochlear implant and hearing aid users," Ear. Hear. 28, 59S-61S (2007). https://doi.org/10.1097/aud.0b013e31803150cb
  41. E. M. Devocht, A. M. L. Janssen, J. Chalupper, R. J. Stokroos, and E. L. George, "The benefits of bimodal aiding on extended dimensions of speech perception: Intelligibility, listening effort, and sound quality," Trend. Hear. 21, 1-20 (2017).
  42. K. Berg, J. Noble, B. Dawant, R. Dwyer, R. Labadie, V. Richards, and R. Gifford, "Musical sound quality as a function of the number of channels in modern cochlear implant receipients," Front. Neurosci. 24, 999 (2019).