DOI QR코드

DOI QR Code

Long Organic Cation-modified Perovskite Solar Cells with High Efficiency and Stability

알킬 사슬이 긴 유기 양이온이 도입된 고효율/고안정성 페로브스카이트 태양전지

  • Jung, Minsu (School of Chemical & Environmental Engineering, Dong-Eui University)
  • 정민수 (동의대학교 화학환경공학부)
  • Received : 2022.01.02
  • Accepted : 2022.01.14
  • Published : 2022.02.10

Abstract

Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency (PCE) in 2020 from 3.8% in 2009 comparable to silicon photovoltacis. However, there remains important concern on the stability of perovskite solar cells under environmental conditions that should be solved prior to commercialization. In order to overcome the problem, we have introduced a small amount of octylammonium iodide with longer alkyl chain than volatile methylammonium iodide into MAPbI3 perovskites. The presence of octylammonium into perovskites were confirmed using Fourier-transform infrared spectroscopy and UV-visible spectroscopy. Moreover, octylammonium-modified perovskite solar cells showed a PCE of 16.6% and enhanced moisture stability with an increased contact angle of 72.2° from 57.0°. This work demonstrated the importance of perovskite compositional engineering for improving efficiency and stability.

무-유기 페로브스카이트 태양전지는 2009년 3.8%에서 2020년 25.5%로 급격한 광전변환효율 상승으로 실리콘 태양전지의 효율과 경쟁할 수준이 되었다. 하지만, 페로브스카이트의 구성성분 중 유기양이온인 메틸암모늄의 열화에 대한 취약성으로 인해 태양전지 소자의 안정성은 여전히 부족하여 상업화에 걸림돌이 되고 있다. 본 연구에서는 태양전지 소자의 광전변환효율의 감소를 최소화하면서 수분 안정성 향상을 위해 열화에 취약한 메틸암모늄의 일부를 소수성의 알킬 사슬이 긴 옥틸암모늄으로 소량 부분 도입하였다. 퓨리에 변환 적외선 흡수분광법과 자외선-가시광선 흡수분광법을 이용하여 옥틸암모늄이 페로브스카이트 결정 내에 도입되었을 확인하였다. 또한, 옥틸암모늄이 소량 부분 도입된 페로브스카이트 태양전지의 광전변환효율은 16.6%로 기존 페로브스카이트 태양전지(18.5%)에 비해 소폭 감소하였지만, 수분 안정성을 나타내는 접촉각은 57.0°에서 72.2°로 크게 향상되었음을 확인하였다. 본 연구는 소수성의 알킬사슬이 긴 유기 양이온을 도입하여 페로브스카이트 태양전지의 광전변환효율과 수분 안정성을 동시에 만족시키는 페로브스카이트 조성 기술 전략을 제공하고 있다.

Keywords

Acknowledgement

이 성과는 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2016R1A6A3A11930303).

References

  1. A. Kojima, K. Teshima, T. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Eng. Soc., 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  2. https://www.nrel.gov/pv/assets/images/efficiency-chart.png, as of 29th December (2021).
  3. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. I. Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598, 444-450 (2021). https://doi.org/10.1038/s41586-021-03964-8
  4. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability, Angew. Chem. Int. Ed., 53, 11232-11235 (2014). https://doi.org/10.1002/anie.201406466
  5. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications, J. Am. Chem. Soc., 137, 7843-7850 (2015). https://doi.org/10.1021/jacs.5b03796
  6. H. Tsai, W. Nie, J.-C. Blancon, C. C Stoumpos, R. Asadpour, and A. D. Mohite, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536, 312-316 (2016). https://doi.org/10.1038/nature18306
  7. J. V. Passarelli, D. J. Fairfield, N. A. Sather, M. P. Hendricks, H. Sai, C. L. Stern, and S. I. Stupp, Enhanced Out-of-Plane Conductivity and Photovoltaic Performance in n = 1 Layered Perovskites through Organic Cation Design, J. Am. Chem. Soc., 140, 7313-7323 (2018). https://doi.org/10.1021/jacs.8b03659
  8. L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, and E. H. Sargent, Ligand-Stabilized Reduced-Dimensionality Perovskites, J. Am. Chem. Soc., 138, 2649-2655 (2016). https://doi.org/10.1021/jacs.5b11740
  9. Y. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, and P. Docampo, Hybrid Perovskite/Perovskite Heterojunction Solar Cells, ACS Nano, 10, 5999-6007 (2016). https://doi.org/10.1021/acsnano.6b01535
  10. T. M, Koh. V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, and S. G. Mhaisalkar, Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics, Adv. Mater., 28, 3653-3661 (2016). https://doi.org/10.1002/adma.201506141
  11. R. Hamaguchi, M. Yoshizawa-Fujita, t. Miyasaka, H. Kunugita, K. Ema, Y. Takeoka, and M. Rikukawa, Formamidine and cesium-based quasi-twodimensional perovskites as photovoltaic absorbers, Chem. Commun., 53, 4366-4369 (2017). https://doi.org/10.1039/c7cc00921f
  12. M. Jung, T. J. Shin, J. Seo, G. Kim, and S. I. Seok, Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells, Energy Environ. Sci., 11, 2188-2197 (2018). https://doi.org/10.1039/c8ee00995c
  13. G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, and M. K. nazeeruddin, One-Year stable perovskite solar cells by 2D/3D interface engineering, Nat. Commun., 8, 15684-15691 (2017). https://doi.org/10.1038/ncomms15684
  14. F. Yang, P. Zhang, M. A. Kamarudin, G. Kapil, T. Ma, and S. Hayase, Addition Effect of Pyreneammonium Iodide to Methyl-ammonium Lead Halide Perovskite-2D/3D Heterostructured Perovskite with Enhanced Stability, Adv. Funct. Mater., 28, 1804856-1804861 (2017). https://doi.org/10.1002/adfm.201804856
  15. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7, 982-988 (2014). https://doi.org/10.1039/c3ee43822h
  16. M. A. Green, Y. Jiang, A. M. Soufiani, and A. Ho-Baillie, Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites, J. Phys. Chem. Lett., 6, 4774-4785 (2015). https://doi.org/10.1021/acs.jpclett.5b01865