DOI QR코드

DOI QR Code

A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance

고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구

  • Jo, Seonghun (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2022.01.05
  • Accepted : 2022.01.20
  • Published : 2022.02.10

Abstract

Reactants of PEMFC are hydrogen and oxygen in gas phases and fuel cell overpotential could be reduced when reactants are smoothly transported. Numerous studies to modify cathode flow field design have been conducted because oxygen mass transfer in high current density region is dominant voltage loss factor. Among those cathode flow field designs, a block in flow field is used to forced supply reactant gas to porous gas diffusion layer. In this study, the block was installed on a simple fuel cell model. Using computational fluid dynamics (CFD), effects of forced convection due to blocks on a polarization curve and local current density contour were studied when different air flow rates were supplied. The high current density could be achieved even with low air supply rate due to forced convection to a gas diffusion layer and also with multiple blocks in series compared to a single block due to an increase of forced convection effect.

고분자전해질막 연료전지의 반응물인 수소와 산소는 기체 상태이므로, 반응물이 원활히 전달될수록 작동 전압의 손실을 줄일 수 있다. 높은 전류밀도 영역에서 산소 물질 전달이 전압 손실을 좌우하므로, 환원극 유로의 형상 변경에 대한 연구들이 진행되어 왔다. 환원극 유로 형상 중에서 유로를 막는 블록은 반응물을 다공성 매질인 기체확산층으로 강제 대류 하도록 사용되었다. 본 연구에서는 간단한 단 채널의 연료전지 모델에 블록을 배치하였다. 전산 유체역학을 사용하였고, 공기 공급 유량을 달리하였을 때 블록으로 인한 강제 대류 효과가 전압-전류 곡선과 국부 전류 밀도에 대한 영향을 연구하였다. 기체확산층으로의 강제 대류 현상을 통하여 적은 공기 공급 유량으로도 높은 전류 밀도를 얻을 수 있었다. 다수의 블록을 직렬로 배치한 경우에 1개의 블록만 배치한 것보다 강제 대류 효과를 증가시켜 높은 전류밀도를 얻을 수 있었다.

Keywords

Acknowledgement

이 논문은 2020년 울산대학교 연구비에 의하여 연구되었음.

References

  1. R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed., 275-277, Wiley, NJ, USA (2016).
  2. P. C. Okonkwo and C. Otor, A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system, Int. J. Energy Res., 45, 3780-3800 (2021). https://doi.org/10.1002/er.6227
  3. P. M. Wilde, M. Mandle, M. Murata, and N. Berg, Structural and physical properties of GDL and GDL/BPP combinations and their influence on PEMFC performance, Fuel Cells, 4 (2004).
  4. S. Flick, M. Schwager, E. McCarthy, and W. Merida, Designed experiments to characterize PEMFC material properties and performance, Appl. Energy, 129, 135-146 (2014). https://doi.org/10.1016/j.apenergy.2014.05.009
  5. N. Zamel and X. Li, Effective transport properties for polymer electrolyte membrane fuel cells - With a focus on the gas diffusion layer, Prog. Energ. Combust. Sci., 39, 111-146 (2013). https://doi.org/10.1016/j.pecs.2012.07.002
  6. M. Marappan, K. Palaniswamy, T. Velumani, B. C. Kim, R. Velayutham, P. Shivakumar, and S. Sundaram, Performance studies of proton exchange membrane fuel cells with different flow field designs - review, Chem. Rec., 21, 663-714 (2021). https://doi.org/10.1002/tcr.202000138
  7. X. D. Wang, Y. Y. Duan, W. M. Yan, and X. F. Peng, Effects of flow channel geometry on cell performance for PEM fuel cells with parallel and interdigitated flow fields, Electrochim. Acta, 53, 5334-5343 (2008). https://doi.org/10.1016/j.electacta.2008.02.095
  8. X. D. Wang, G. Lu, Y. Y. Duan, and D. J. Lee, Numerical analysis on performances of polymer electrolyte membrane fuel cells with various cathode flow channel geometries, Int. J. Hydrogen Energy, 37, 15778-15786 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.028
  9. A. Aiyejina and M. K. S. Sastry, PEMFC flow channel geometry optimization: A review, J. Fuel Cell Sci. Technol., 9, 011011 (2012). https://doi.org/10.1115/1.4005393
  10. H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, and A. Mazza, A review of water flooding issues in the proton exchange membrane fuel cell, J. Power Sources, 178, 103-117 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.068
  11. J. St-Pierre, D. P. Wilkinson, S. Knights, and M. L. Bos, Relationship between water management, contamination and lifetime degradation in PEFC, J. New Mater. Electrochem. Syst., 3, 99-106 (2000).
  12. A. Mughal and X. Li, Experimental diagnostics of PEM fuel cells, Int. J. Environ. Stud., 63, 277 (2006).
  13. X. G. Yang, N. Burke, C. Y. Wang, K. Tajiri, and K. Shinohara, Simultaneous measurements of species and current distribution in a PEFC under low-humidity operation, J. Electrochem. Soc., 152, 759-766 (2005).
  14. P. J. Hamilton and B. G. Pollet, Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: Design, materials and characterization, Fuel Cells, 10, 489-509 (2010). https://doi.org/10.1002/fuce.201000033
  15. X. Li, I. Sabir, and J. Park, A flow channel design procedure for PEM fuel cells with effective water removal, J. Power Sources, 163, 933-942 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.015
  16. L. Yu, G. Ren, M. Qin, and X. Jiang, Transport mechanisms and performance simulations of a PEM fuel cell with interdigitated flow field, Renew. Energy, 34, 530-543 (2009). https://doi.org/10.1016/j.renene.2008.05.048
  17. J. H. Jang, W. M. Yan, H. Y. Li, and Y. C. Chou, Humidity of reactant fuel on the cell performance of PEM fuel cell with baffle-blocked flow field designs, J. Power Sources, 159, 468-477 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.096
  18. H. W. Wu and H. W. Ku, The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel in PEMFC from a three-dimensional PEMFC model and the Taguchi method, Appl. Energy, 88, 4879-4890 (2011). https://doi.org/10.1016/j.apenergy.2011.06.034
  19. S. Barati, B. Khoshandam, and M. M. Ghazi, An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology, Int. J. Hydrogen Energy, 43, 21928-21939 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.032