DOI QR코드

DOI QR Code

Research Trends in Chemical Analysis Based Explosive Detection Techniques

화학분석 기반 폭발물 탐지 기술 동향

  • Moon, Sanghyeon (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Wonjoo (Aerospace and Defence Reliability, Korea Testing Laboratory) ;
  • Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
  • 문상현 (인하대학교 화학.화학공학융합학과) ;
  • 이원주 (한국산업기술시험원 항공국방신뢰성센터) ;
  • 이기영 (인하대학교 화학.화학공학융합학과)
  • Received : 2021.09.01
  • Accepted : 2021.09.29
  • Published : 2022.02.10

Abstract

This paper reviews the principles, advantages, and disadvantages of main explosives detection technologies, as well as research areas needed in the future. Explosives detection technology can be classified into spectroscopic methods, sensor techniques, and olfactory type sensors. There have been advances in explosives detection technology, however studies on discriminatory, portability, and sensitivity for explosives detection still remained competitive.

본 논문은 주요 폭발물 탐지 기술에 대한 원리, 장단점 및 향후 필요한 연구 분야에 대한 총설이다. 폭발물 탐지 기술은 분광학적 방법(spectroscopic methods), 감지기 기술(sensor techniques), 후각 감지기(olfactory type sensors)로 분류할 수 있다. 이러한 탐지 기술은 많은 발전이 있었지만 폭발물 탐지를 위한 판별성, 휴대성, 감도에 관한 연구 가능성이 높은 것으로 보인다.

Keywords

Acknowledgement

본 연구는 국토교통부 빅데이터 기반 항공안전관리 보안인증 기술개발사업의 연구비 지원(22BDAS-C151631-04)에 의해 수행되었습니다

References

  1. J. I. Eum, A Study on Legislation for Introducing Aviation Security Equipments Certification System, Master Dissertation, Korea Aerospace University, Gyeonggi-do, Korea (2018).
  2. W. Lee and K. Lee, Recent Research Trends in Explosive Detection through Electrochemical Methods, Appl. Chem. Eng., 30, 399-407 (2019). https://doi.org/10.14478/ACE.2019.1051
  3. J. S. Caygill, F. Davis, and S. P. Higson, Current trends in explosive detection techniques, Talanta, 88, 14-29 (2012). https://doi.org/10.1016/j.talanta.2011.11.043
  4. Reliable Ministry of Government Legislation, Korea Law Information Center, Act No.14954, AVIATION SECURITY ACT [Website], (2021.09.25)
  5. Chemring Group and Cobham, Global Explosive Detection Equipment Market 2019-2023, TechNavio (Infiniti Research Ltd.)
  6. J. Yinon, Detection of Explosives by Mass Spectrometry in Counterterrorist Detection Techniques of Explosives, Elsevier, Netherlands (2007).
  7. Y. Song and R. G. Cooks, Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents, Rapid Commun. Mass Spectrom., 20, 3130-3138 (2006). https://doi.org/10.1002/rcm.2714
  8. Y. Takada, H. Nagano, M. Suga, Y. Hashimoto, M. Yamada, M. Sakairi, K. Kusumoto, T. Ota, and J. Nakamura, Detection of Military Explosives by Atmospheric Pressure Chemical Ionization Mass Spectrometry with Counter-Flow Introduction, Propellants Explos. Pyrotech., 27, 224-228 (2002). https://doi.org/10.1002/1521-4087(200209)27:4<224::AID-PREP224>3.0.CO;2-V
  9. C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry, Anal. Chem., 78, 3807-3814 (2006). https://doi.org/10.1021/ac060190h
  10. R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, Detection Technologies. Ambient mass spectrometry, Science, 311, 1566-1570 (2006). https://doi.org/10.1126/science.1119426
  11. D. R. Justes, N. Talaty, I. Cotte-Rodriguez, and R. G. Cooks, Detection of explosives on skin using ambient ionization mass spectrometry, Chem. Commun., 2142-2144 (2007).
  12. I. Cotte-Rodriguez, H. Hernandez-Soto, H. Chen, and R. G. Cooks, In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization, Anal. Chem., 80, 1512-1519 (2008). https://doi.org/10.1021/ac7020085
  13. Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science, 306, 471-473 (2004). https://doi.org/10.1126/science.1104404
  14. R. B. Cody, J. A. Laramee, and H. D. Durst, Versatile new ion source for the analysis of materials in open air under ambient conditions, Anal. Chem., 77, 2297-2302 (2005). https://doi.org/10.1021/ac050162j
  15. J. M. Nilles, T. R. Connell, S. T. Stokes, and H. Dupont Durst, Explosives Detection Using Direct Analysis in Real Time (DART) Mass Spectrometry, Propellants Explos. Pyrotech., 35, 446-451 (2010). https://doi.org/10.1002/prep.200900084
  16. H. Wang, W. Sun, J. Zhang, X. Yang, T. Lin, and L. Ding, Desorption corona beam ionization source for mass spectrometry, Analyst, 135, 688-695 (2010). https://doi.org/10.1039/b922616h
  17. R. M. Alberici, R. C. Simas, G. B. Sanvido, W. Romao, P. M. Lalli, M. Benassi, I. B. Cunha, and M. N. Eberlin, Ambient mass spectrometry: bringing MS into the "real world", Anal. Bioanal. Chem., 398, 265-294 (2010). https://doi.org/10.1007/s00216-010-3808-3
  18. F. M. Green, T. L. Salter, P. Stokes, I. S. Gilmore, and G. O'Connor, Ambient mass spectrometry: advances and applications in forensics, Surf. Interface Anal., 42, 347-357 (2010). https://doi.org/10.1002/sia.3131
  19. M. G. Blain, L. S. Riter, D. Cruz, D. E. Austin, G. Wu, W. R. Plass, and R. G. Cooks, Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps, Int. J. Mass Spectrom., 236, 91-104 (2004). https://doi.org/10.1016/j.ijms.2004.06.011
  20. C. C. Mulligan, N. Talaty, and R. G. Cooks, Desorption electrospray ionization with a portable mass spectrometer: in situ analysis of ambient surfaces, Chem. Commun., 1709-1711 (2006).
  21. N. L. Sanders, S. Kothari, G. Huang, G. Salazar, and R. G. Cooks, Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer, Anal. Chem., 82, 5313-5316 (2010). https://doi.org/10.1021/ac1008157
  22. J. M. Wells, M. J. Roth, A. D. Keil, J. W. Grossenbacher, D. R. Justes, G. E. Patterson, and D. J. Barket, Jr., Implementation of DART and DESI ionization on a fieldable mass spectrometer, J. Am. Soc. Mass Spectrom., 19, 1419-1424 (2008). https://doi.org/10.1016/j.jasms.2008.06.028
  23. E. Schramm, J. Holzer, M. Putz, R. Schulte-Ladbeck, R. Schultze, M. Sklorz, A. Ulrich, J. Wieser, and R. Zimmermann, Real-time trace detection of security-relevant compounds in complex sample matrices by thermal desorption-single photon ionization-ion trap mass spectrometry (TD-SPI-ITMS), Anal. Bioanal. Chem., 395, 1795-1807 (2009). https://doi.org/10.1007/s00216-009-2916-4
  24. M. R. Leahy-Hoppa, M. J. Fitch, and R. Osiander, Terahertz spectroscopy techniques for explosives detection, Anal. Bioanal. Chem., 395, 247-257 (2009). https://doi.org/10.1007/s00216-009-2803-z
  25. D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?, Proc. IEEE, 93, 1722-1743 (2005). https://doi.org/10.1109/JPROC.2005.853539
  26. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, Terahertz Spectroscopy and Imaging for Defense and Security Applications, Proc. IEEE, 95, 1514-1527 (2007). https://doi.org/10.1109/JPROC.2007.898903
  27. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security Applications-explosives, weapons and drugs, Semicond. Sci. Technol., 20, S266-S280 (2005). https://doi.org/10.1088/0268-1242/20/7/018
  28. H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, Detection and identification of explosive RDX by THz diffuse reflection spectroscopy, Opt. Express, 14, 415-423 (2006). https://doi.org/10.1364/OPEX.14.000415
  29. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X. C. Zhang, Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz, Opt. Express, 15, 12060-12067 (2007). https://doi.org/10.1364/OE.15.012060
  30. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, Wideband terahertz spectroscopy of explosives, Chem. Phys. Lett., 434, 227-230 (2007). https://doi.org/10.1016/j.cplett.2006.12.015
  31. T. Lo, I. S. Gregory, C. Baker, P. F. Taday, W. R. Tribe, and M. C. Kemp, The very far-infrared spectra of energetic materials and possible confusion materials using terahertz pulsed spectroscopy, Vib. Spectrosc., 42, 243-248 (2006). https://doi.org/10.1016/j.vibspec.2006.03.002
  32. O. M. Primera-Pedrozo, Y. M. Soto-Feliciano, L. C. PachecoLondono, and S. P. Hernandez-Rivera, Detection of High Explosives Using Reflection Absorption Infrared Spectroscopy with Fiber Coupled Grazing Angle Probe/FTIR, Sens. Imaging, 10, 1-13 (2009). https://doi.org/10.1007/s11220-009-0042-1
  33. Y. Mou and J. W. Rabalais, Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy, J. Forensic Sci., 54, 846-850 (2009). https://doi.org/10.1111/j.1556-4029.2009.01060.x
  34. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects, Anal. Bioanal. Chem., 395, 283-300 (2009). https://doi.org/10.1007/s00216-009-2802-0
  35. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy, Spectrochim. Acta B, 66, 12-20 (2011). https://doi.org/10.1016/j.sab.2010.11.012
  36. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination, Spectrochim. Acta B, 62, 1399-1404 (2007). https://doi.org/10.1016/j.sab.2007.10.036
  37. C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis, Spectrochim. Acta B, 62, 1519-1527 (2007). https://doi.org/10.1016/j.sab.2007.10.038
  38. R. G. Ewing, D. A. Atkinson, G. A. Eiceman, and G. J. Ewing, A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds, Talanta, 54, 515-529 (2001). https://doi.org/10.1016/S0039-9140(00)00565-8
  39. R. G. Ewing and M. J. Waltman, Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge, Int. J. Ion Mobil. Spectrom., 12, 65-72 (2009). https://doi.org/10.1007/s12127-009-0019-8
  40. M. J. Waltman, P. Dwivedi, H. H. Hill, Jr., W. C. Blanchard, and R. G. Ewing, Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry, Talanta, 77, 249-255 (2008). https://doi.org/10.1016/j.talanta.2008.06.014
  41. M. Tabrizchi and V. Ilbeigi, Detection of explosives by positive corona discharge ion mobility spectrometry, J. Hazard. Mater., 176, 692-696 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.087
  42. J. S. Babis, R. P. Sperline, A. K. Knight, D. A. Jones, C. A. Gresham, and M. B. Denton, Performance evaluation of a miniature ion mobility spectrometer drift cell for application in hand-held explosives detection ion mobility spectrometers, Anal. Bioanal. Chem., 395, 411-419 (2009). https://doi.org/10.1007/s00216-009-2818-5
  43. S. Zimmermann, N. Abel, W. Baether, and S. Barth, An ion-focusing aspiration condenser as an ion mobility spectrometer, Sens. Actuators B Chem., 125, 428-434 (2007). https://doi.org/10.1016/j.snb.2007.02.038
  44. M. Martin, M. Crain, K. Walsh, R. A. McGill, E. Houser, J. Stepnowski, S. Stepnowski, H.-D. Wu, and S. Ross, Microfabricated vapor preconcentrator for portable ion mobility spectroscopy, Sens. Actuators B Chem., 126, 447-454 (2007). https://doi.org/10.1016/j.snb.2007.03.040
  45. A. B. Kanu, C. Wu, and H. H. Hill, Jr., Rapid preseparation of interferences for ion mobility spectrometry, Anal. Chim. Acta, 610, 125-134 (2008). https://doi.org/10.1016/j.aca.2007.08.024
  46. F. W. Karasek and D. W. Denney, Detection of 2,4,6-trinitrotoluene vapours in air by plasma chromatography, J. Chromatogr., 93, 141-147 (1974). https://doi.org/10.1016/S0021-9673(00)83025-3
  47. E. L. Izake, Forensic and homeland security applications of modern portable Raman spectroscopy, Forensic Sci. Int., 202, 1-8 (2010). https://doi.org/10.1016/j.forsciint.2010.03.020
  48. D. S. Moore and R. J. Scharff, Portable Raman explosives detection, Anal. Bioanal. Chem., 393, 1571-1578 (2009). https://doi.org/10.1007/s00216-008-2499-5
  49. L. C. Pacheco-Londono, W. Ortiz-Rivera, O. M. Primera-Pedrozo, and S. P. Hernandez-Rivera, Vibrational spectroscopy standoff detection of explosives, Anal. Bioanal. Chem., 395, 323-335 (2009). https://doi.org/10.1007/s00216-009-2954-y
  50. A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Ostmark, Near Real-Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55 m Distance, Propellants Explos. Pyrotech., 34, 297-306 (2009). https://doi.org/10.1002/prep.200800055
  51. Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, Narrow gated Raman and luminescence of explosives, J. Lumin., 129, 979-983 (2009). https://doi.org/10.1016/j.jlumin.2009.04.008
  52. A. Portnov, I. Bar, and S. Rosenwaks, Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering, Appl. Phys. B, 98, 529-535 (2009). https://doi.org/10.1007/s00340-009-3709-3
  53. E. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, Detection of explosives on human nail using confocal Raman microscopy, J. Raman Spectrosc., 40, 144-149 (2009). https://doi.org/10.1002/jrs.2096
  54. E. M. Ali, H. G. Edwards, and I. J. Scowen, In-situ detection of single particles of explosive on clothing with confocal Raman microscopy, Talanta, 78, 1201-1203 (2009). https://doi.org/10.1016/j.talanta.2008.12.038
  55. E. M. A. Ali, H. G. M. Edwards, and I. J. Scowen, Raman spectroscopy and security applications: the detection of explosives and precursors on clothing, J. Raman Spectrosc., 40, 2009-2014 (2009). https://doi.org/10.1002/jrs.2360
  56. B. A. Paldus and A. A. Kachanov, An historical overview of cavity-enhanced methods, Can. J. Phys., 83, 975-999 (2005). https://doi.org/10.1139/p05-054
  57. G. Berden, R. Peeters, and G. Meijer, Cavity ring-down spectroscopy: Experimental schemes and applications, Int. Rev. Phys. Chem., 19, 565-607 (2010). https://doi.org/10.1080/014423500750040627
  58. C. Ramos and P. J. Dagdigian, Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy, Appl. Opt., 46, 620-627 (2007). https://doi.org/10.1364/AO.46.000620
  59. C. Ramos and P. J. Dagdigian, Effect of photochemistry on molecular detection by cavity ringdown spectroscopy: case study of an explosive-related compound, Appl. Opt., 46, 6526-6532 (2007). https://doi.org/10.1364/AO.46.006526
  60. S. J. Peppernick, K. D. Dasitha Gunaratne, and A. W. Castleman, Towards comprehending the superatomic state of matter, Chem. Phys. Lett., 489, 1-11 (2010). https://doi.org/10.1016/j.cplett.2010.02.037
  61. C. F. Bernasconi, Kinetic and spectral study of some reactions of 2, 4, 6-trinitrotoluene in basic solution. I. Deprotonation and Janovsky complex formation, J. Org. Chem., 36, 1671-1679 (1971). https://doi.org/10.1021/jo00811a022
  62. Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays, Angew. Chem. Int. Ed., 49, 6830-6835 (2010). https://doi.org/10.1002/anie.201000847
  63. D. Gao, Z. Wang, B. Liu, L. Ni, M. Wu, and Z. Zhang, Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT, Anal. Chem., 80, 8545-8553 (2008). https://doi.org/10.1021/ac8014356
  64. F. Wang, W. Wang, B. Liu, Z. Wang, and Z. Zhang, Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultra-trace trinitrotoluene, Talanta, 79, 376-382 (2009). https://doi.org/10.1016/j.talanta.2009.03.062
  65. C.-L. Yuan, C.-P. Chang, Y.-S. Hong, and Y. J. M. S.-P. Sung, Fabrication of MWNTs-PANI composite-a chemiresistive sensor material for the detection of explosive gases, Mater. Sci.-Pol., 27, 509-520 (2009).
  66. A. Diaz Aguilar, E. S. Forzani, M. Leright, F. Tsow, A. Cagan, R. A. Iglesias, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, A hybrid nanosensor for TNT vapor detection, Nano Lett., 10, 380-384 (2010). https://doi.org/10.1021/nl902382s
  67. S. Singh, Sensors-an effective approach for the detection of explosives, J. Hazard. Mater., 144, 15-28 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.018
  68. S. Moon, D. K. Charyulu, W. Lee, and K. Lee, Controlling the geometric design of anodic 1D TiO2 nanotubes for the electrochemical reduction of 2,4,6-trinitrotoluene in ambient conditions, J. Electroanal. Chem., 900, 115717 (2021). https://doi.org/10.1016/j.jelechem.2021.115717
  69. J. Wang, Analytical Electrochemistry: Study of electrode reactions and interfacial properties, Wiley (2006).
  70. L. Agui, D. Vega-Montenegro, P. Yanez-Sedeno, and J. M. Pingarron, Rapid voltammetric determination of nitroaromatic explosives at electrochemically activated carbon-fibre electrodes, Anal. Bioanal. Chem., 382, 381-387 (2005). https://doi.org/10.1007/s00216-004-3017-z
  71. G. Shi, Y. Qu, Y. Zhai, Y. Liu, Z. Sun, J. Yang, and L. Jin, {MSU/PDDA}n LBL assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds, Electrochem. Commun., 9, 1719-1724 (2007). https://doi.org/10.1016/j.elecom.2007.03.019
  72. X.-C. Fu, X. Chen, J. Wang, J.-H. Liu, and X.-J. Huang, Amino functionalized mesoporous silica microspheres with perpendicularly aligned mesopore channels for electrochemical detection of trace 2,4,6-trinitrotoluene, Electrochim. Acta, 56, 102-107 (2010). https://doi.org/10.1016/j.electacta.2010.09.045
  73. J. Zang, C. X. Guo, F. Hu, L. Yu, and C. M. Li, Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon, Anal. Chim. Acta, 683, 187-191 (2011). https://doi.org/10.1016/j.aca.2010.10.019
  74. K. Cizek, C. Prior, C. Thammakhet, M. Galik, K. Linker, R. Tsui, A. Cagan, J. Wake, J. La Belle, and J. Wang, Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor, Anal. Chim. Acta, 661, 117-121 (2010). https://doi.org/10.1016/j.aca.2009.12.008
  75. J. Wang, Electrochemical Sensing of Explosives, Electroanalysis, 19, 415-423 (2007). https://doi.org/10.1002/elan.200603748
  76. D. Lu, A. Cagan, R. A. Munoz, T. Tangkuaram, and J. Wang, Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue 'artificial-peroxidase' modified electrode, Analyst, 131, 1279-1281 (2006). https://doi.org/10.1039/b613092e
  77. S. Parajuli and W. Miao, Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate, Anal. Chem., 81, 5267-5272 (2009). https://doi.org/10.1021/ac900489a
  78. J. Wang and M. Pumera, Microchip flow-injection analysis of trace 2,4,6-trinitrotoluene (TNT) using mercury-amalgam electrochemical detector, Talanta, 69, 984-987 (2006). https://doi.org/10.1016/j.talanta.2005.12.001
  79. J. C. Chen, J. L. Shih, C. H. Liu, M. Y. Kuo, and J. M. Zen, Disposable electrochemical sensor for determination of nitro-aromatic compounds by a single-run approach, Anal. Chem., 78, 3752-3757 (2006). https://doi.org/10.1021/ac060002n
  80. V. Bhalla, X. Zhao, and V. Zazubovich, Detection of explosive compounds using Photosystem II-based biosensor, J. Electroanal. Chem., 657, 84-90 (2011). https://doi.org/10.1016/j.jelechem.2011.03.026
  81. L. Yu, Y. Huang, X. Jin, A. J. Mason, and X. Zeng, Ionic liquid thin layer EQCM explosives sensor, Sens. Actuators B Chem., 140, 363-370 (2009). https://doi.org/10.1016/j.snb.2009.04.038
  82. M. S. Meaney and V. L. McGuffin, Luminescence-based methods for sensing and detection of explosives, Anal. Bioanal. Chem., 391, 2557-2576 (2008). https://doi.org/10.1007/s00216-008-2194-6
  83. H. Du, G. He, T. Liu, L. Ding, and Y. Fang, Preparation of pyrene-functionalized fluorescent film with a benzene ring in spacer and sensitive detection to picric acid in aqueous phase, J. Photochem. Photobiol., A, 217, 356-362 (2011). https://doi.org/10.1016/j.jphotochem.2010.11.004
  84. M. P. Monterola, B. W. Smith, N. Omenetto, and J. D. Winefordner, Photofragmentation of nitro-based explosives with chemiluminescence detection, Anal. Bioanal. Chem., 391, 2617-2626 (2008). https://doi.org/10.1007/s00216-008-2177-7
  85. S. J. Toal, J. C. Sanchez, R. E. Dugan, and W. C. Trogler, Visual detection of trace nitroaromatic explosive residue using photo-luminescent metallole-containing polymers, J. Forensic Sci., 52, 79-83 (2007). https://doi.org/10.1111/j.1556-4029.2006.00332.x
  86. G. H. Shi, Z. B. Shang, Y. Wang, W. J. Jin, and T. C. Zhang, Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds, Spectrochim. Acta A, 70, 247-252 (2008). https://doi.org/10.1016/j.saa.2007.07.054
  87. M. Algarra, B. B. Campos, M. S. Miranda, and J. C. da Silva, CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds, Talanta, 83, 1335-1340 (2011). https://doi.org/10.1016/j.talanta.2010.10.056
  88. A. Ponnu and E. V. Anslyn, A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives, Supramol. Chem., 22, 65-71 (2010). https://doi.org/10.1080/10610270903378032
  89. J. C. Sanchez, S. J. Toal, Z. Wang, R. E. Dugan, and W. C. Trogler, Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor, J. Forensic Sci., 52, 1308-1313 (2007).
  90. J. C. Sanchez, A. G. DiPasquale, A. L. Rheingold, and W. C. Trogler, Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers, Chem. Mater., 19, 6459-6470 (2007). https://doi.org/10.1021/cm702299g
  91. J. C. Sanchez and W. C. Trogler, Efficient blue-emitting silafluorene-fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives, J. Mater. Chem., 18, 3143-3156 (2008). https://doi.org/10.1039/b802623h
  92. T. Caron, M. Guillemot, P. Montmeat, F. Veignal, F. Perraut, P. Prene, and F. Serein-Spirau, Ultra trace detection of explosives in air: development of a portable fluorescent detector, Talanta, 81, 543-548 (2010). https://doi.org/10.1016/j.talanta.2009.12.040
  93. T. Caron, S. Clavaguera, M. Huron, P. Montmeat, E. Pasquinet, J.-P. Lere-Porte, F. Serein-Spirau, F. Perraut, and P. J. C. E. T. Prene, Detection of explosive vapors: development and performances of a fluorescence sensor, Chem. Eng. Trans., 23, 25-30 (2010).
  94. M. D. Woodka, V. P. Schnee, and M. P. Polcha, Fluorescent polymer sensor array for detection and discrimination of explosives in water, Anal. Chem., 82, 9917-9924 (2010). https://doi.org/10.1021/ac102504t
  95. R. G. Smith, N. D'Souza, and S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection, Analyst, 133, 571-584 (2008). https://doi.org/10.1039/b717933m
  96. G. P. Anderson, S. C. Moreira, P. T. Charles, I. L. Medintz, E. R. Goldman, M. Zeinali, and C. R. Taitt, TNT detection using multiplexed liquid array displacement immunoassays, Anal. Chem., 78, 2279-2285 (2006). https://doi.org/10.1021/ac051995c
  97. G. P. Anderson, M. Moore, P. T. Charles, and E. R. Goldman, Bead-Based Fluid Array Detection of Pentaerythritol Tetranitrate: Comparison of Monoclonal vs. Llama Polyclonal Antibodies, Anal. Lett., 43, 2913-2922 (2010). https://doi.org/10.1080/00032711003763699
  98. K. Nagatomo, T. Kawaguchi, N. Miura, K. Toko, and K. Matsumoto, Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface, Talanta, 79, 1142-1148 (2009). https://doi.org/10.1016/j.talanta.2009.02.018
  99. P. Singh, T. Onodera, Y. Mizuta, K. Matsumoto, N. Miura, and K. Toko, Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: Fabrication and advantages, Sens. Actuators B Chem., 137, 403-409 (2009). https://doi.org/10.1016/j.snb.2008.12.027
  100. K. Furton, The scientific foundation and efficacy of the use of canines as chemical detectors for explosives, Talanta, 54, 487-500 (2001). https://doi.org/10.1016/S0039-9140(00)00546-4
  101. I. Gazit and J. Terkel, Explosives detection by sniffer dogs following strenuous physical activity, Appl. Anim. Behav. Sci., 81, 149-161 (2003). https://doi.org/10.1016/S0168-1591(02)00274-5
  102. J. Otto, M. F. Brown, and W. Long, Training rats to search and alert on contraband odors, Appl. Anim. Behav. Sci., 77, 217-232 (2002). https://doi.org/10.1016/S0168-1591(02)00052-7
  103. B. Marshall, C. G. Warr, and M. de Bruyne, Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster, Chem. Senses, 35, 613-625 (2010). https://doi.org/10.1093/chemse/bjq050
  104. R. Glatz and K. Bailey-Hill, Mimicking nature's noses: from receptor deorphaning to olfactory biosensing, Prog. Neurobiol., 93, 270-296 (2011). https://doi.org/10.1016/j.pneurobio.2010.11.004
  105. J. Yinon, Peer Reviewed: Detection of Explosives by Electronic Noses, Anal. Chem., 75, 98 A-105 A (2003). https://doi.org/10.1021/ac020428b
  106. S. E. Stitzel, L. J. Cowen, K. J. Albert, and D. R. Walt, Array-to-array transfer of an artificial nose classifier, Anal. Chem., 73, 5266-5271 (2001). https://doi.org/10.1021/ac010111w
  107. M. E. Koscho, R. H. Grubbs, and N. S. Lewis, Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites, Anal. Chem., 74, 1307-1315 (2002). https://doi.org/10.1021/ac011054+
  108. H. Wohltjen and R. Dessy, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal. Chem., 51, 1458-1464 (2002). https://doi.org/10.1021/ac50045a024