DOI QR코드

DOI QR Code

토양 내 J-hook 궤적을 고려한 침투해석 모델 개발

Penetration Model in Soil Considering J-hook Trajectory

  • 성승훈 (국방과학연구소 미사일연구원) ;
  • 지훈 (국방과학연구소 미사일연구원)
  • Sung, Seung-Hun (Research and Development Institute, Agency for Defense Development) ;
  • Ji, Hun (Research and Development Institute, Agency for Defense Development)
  • 투고 : 2021.09.13
  • 심사 : 2021.12.03
  • 발행 : 2022.02.28

초록

본 연구에서는 토양-탄체 간 분리 및 재접촉을 고려한 IFL 기반 침투해석 기술을 개발하고 이를 기존 문헌의 실험결과와 비교하는 연구를 수행했다. 탄체를 강체로 가정한 후, 토양 내로 침투 시 발생하는 구형공동팽창 현상을 고려함으로써 탄체의 궤적을 예측할 수 있다. 토양에 대한 저항함수는 Mohr-Coulomb 항복 모델을 활용했으며, 입사각 혹은 AOA에 따른 J-hook 현상을 모사할 수 있다. 기존 문헌에서의 실험결과(총 6회)와의 비교 결과, 수치해석으로부터 예측한 탄체의 침투 깊이는 실험대비 약 13.4%의 평균오차를 나타냈다. 일반적으로 탄체의 침투 경로를 예측하기 위해 유한요소법이 널리 활용된다. 하지만, 유한요소법 활용 시, 탄체의 모델링을 위해 많은 시간과 노력이 필요하며, 해석 수행을 위해 수 시간이 소요된다. 본 연구를 통해 개발한 모델을 활용할 시, 탄체의 치수 입력만 필요하며 해석 시간도 수 초 이내이다.

This study proposes a penetration model in soil considering the wake separation and reattachment based on the integrated force law (IFL). Rigid body dynamics, the IFL, and semi-empirical resistance function about soil are utilized to formulate the motion of the hard projectile. The model can predict the trajectory in soil considering the spherical cavity expansion phenomenon under various oblique angles and angles of attack (AOA). The Mohr-Coulomb yield model is utilized as the resistance function of the soil. To confirm the feasibility of the proposed model, a comparative study is conducted with experimental results described in the open literature. From the comparative study, the penetration depth estimated from the proposed model had about 13.4% error compared to that of the experimental results. In general, the finite element method is widely used to predict the trajectory in soil for a projectile. However, it takes considerable time to construct the computational model for the projectile and perform the numerical simulation. The proposed model only needs to the dimension of the projectile and can predict the trajectory of the projectile in a few seconds.

키워드

참고문헌

  1. Adley, M.D., Berger, R.P., Cargile, J.D., White, H.G., Greighton, D.C. (1997) Three Dimensional Projectile Penetration into Curvilinear Geological/Structural Target, user's Guide for PENCRV3D, U.S. Army Waterways Experiment Station, Instruction Report SL-97-1. MS. USA.
  2. Bernald, R.S., Creighton, D.C. (1979) Projectile Penetration in Soil and Rock: Analysis for Non-Normal Impact, Technical Report SL-79-15. U.S. Army Engineer Waterways Experiment Station Vicksbury MS Structures Laboratory. USA.
  3. Danielson, K.T., Adley, M.D. (2000) A Meshless Treatment of Three-Dimensional Penetrator Targets for Parallel Computation, Comput. Mech., 25(2), pp.267~273. https://doi.org/10.1007/s004660050475
  4. Forrestal, M.J., Luk, V.K. (1992) Penetration into Soil Targets, Int. J. Impact. Eng., 12(3), pp.427~444. https://doi.org/10.1016/0734-743X(92)90167-R
  5. Heuze, F.E. (1990) An Overview of Projectile Penetration into Geological Materials with Emphasis on Rocks, Int. J. Fock. Mech. Min. Sci. Geomech., 27(1), pp.1~14. https://doi.org/10.1016/0148-9062(90)90003-K
  6. Kong, X., Fang, Q., Hong, J., Wu, H. (2014) Numerical Study of the Wake Separation and Reattachment Effect on the Trajectory of a Hard Projectile, Int. J. Prot. Struct., 5(1), pp.97~117. https://doi.org/10.1260/2041-4196.5.1.97
  7. Sun, Q., Sun, Y., Liu, Y., Li, R., Zhao, Y. (2017) Numerical Analysis of the Trajectory Stability and Penetration Ability of Different Lateral-Abnormal Projectiles for Non-Normal Penetration into Soil based on Modified Integrated Force Law Method, Int. J. Impact Eng., 103, pp.159~168. https://doi.org/10.1016/j.ijimpeng.2017.01.010
  8. Youch, D. (2006) Efficient Calculation of Earth Penetrating Projectile Trajectories, Naval Postgraduate School, California, USA. Master's Thesis.