
International Journal of Internet, Broadcasting and Communication Vol.14 No.1 162-169 (2022)

http://dx.doi.org/10.7236/IJIBC.2022.14.1.162

Framework design for efficient Arduino program development

Dong-Hwan Gong

Assistant Professor, Department of Computer Engineering, Hansei University, Korea
armyvision@hansei.ac.kr

Abstract

Arduino is used in various places such as education, experimentation, and industry. Due to the easy

accessibility of Arduino, it is often used by non-majors, and it is also used in media art and toy programs.

Although Arduino is relatively easy to use compared to other devices, it is not easy to control various IoT

components at the same time. Some tasks run independently of other tasks, while others run dependently. In

this paper, I proposed the Arduino Task Framework to efficiently execute many tasks in these various situations.

The design framework of this paper is largely composed of two types: synchronous execution and

asynchronous execution. These two execution methods can be combined to create several independent and

dependent execution routines. Asynchronous tasks are independently executed tasks and are managed by

AsyncTaskGroup, while synchronous tasks are dependently executed tasks and are managed by

SyncTaskGroup. AsyncTaskGroup instance and SyncTaskGroup instance are instances of the same Task and

can be used in combination with another task. The Arduino framework proposed in this paper simplifies the

program structure and can easily compose various tasks.

Keywords: Arduino, Framework, IoT Framework, Task, Multitasking, Synchronous, Asnchronous, IoT Device

Framework, Open source Hardware.

1. Introduction

Most IoT devices receive control signals from the IoT platform and communicate with various sensors. It

receives data from sensors and sends it to the IoT cloud, or receives data from the IoT cloud and sends the data

to an output device[8]. Arduino requires multitasking to perform these various tasks[2-3]. Multitasking

consists of a combination of synchronous and asynchronous tasks. In addition, the Arduino executes several

independent tasks to process the various types of data received[1].

If the IoT device input/output framework is configured incorrectly, input/output side effects that cause

problems in data processing occur. These side effects lead to inefficiencies that shorten the lifespan of the

device or prevent normal performance[4]. Therefore, it is important to configure the IoT device program with

low specification performance simply and efficiently. The IoT device communicates with the remote device

via Bluetooth and with the cloud IoT server via Wi-Fi. At the same time, when Bluetooth data

transmission/reception is completed, the LED is turned on, and when Wi-Fi communication is completed, the

completion information is output on the LCD. At this time, Bluetooth communication and Wi-Fi

IJIBC 22-1-20

Manuscript Received: December. 25, 2021 / Revised: December. 28, 2021 / Accepted: January. 3, 2022
Corresponding Author: armyvision@hansei.ac.kr
Tel: +82-31-450-5340, Fax: +82-31-450-5172
Assistant Professor, Department of Computer Engineering, Hansei University, Korea

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 162-169 (2022) 163

communication are independent and asynchronous operations[6-7]. When Bluetooth communication is

completed, the operation of turning on the LED is a sequential and synchronous operation[9]. When the Wi-

Fi communication is completed, the operation of outputting the completion information to the LCD is also a

sequential and synchronous operation. Therefore, it is important to systematically organize asynchronous and

synchronous operations[5]. A common Arduino framework is ArduinoComponents. ArduinoComponents

gives you base components and a framework for writing component and event based code for any Arduino

supported microcontroller with one unified interface. ArduinoComponents gives your the base Component

class and many usefull utilities[9]. But ArduinoComponents have a complex structure.

The design framework of this paper is largely composed of two types of execution methods: synchronous

execution and asynchronous execution. These two execution methods can be combined to create several

independent and dependent execution routines. Asynchronous tasks are independently executed tasks and are

managed by AsyncTaskGroup, while synchronous tasks are dependently executed tasks and are managed by

SyncTaskGroup. AsyncTaskGroup instance and SyncTaskGroup instance are instances of the same Task and

can be used in combination with another task[10].

2. Proposed framework

Figure 1 shows the class diagram of the designed framework. Task is an abstract class of an asynchronous

task, and it becomes a base class that repeats at a certain time and operates. The callback attribute of the Task

class is a task for Task to execute, and the client registers as a callback function.The main functions of Task

are available() and run() methods. The method available() checks the time (ms) value set in the interval attribute,

and the method run() executes the task (callback) when the runnable state (the time set in the interval attribute)

is reached. AsyncTaskGroup class has add() and remove() methods to register and remove Task instances to

taskList collection. The AsyncTaskGroup class also inherits the Task class and operates as an independent

task. The SyncTaskGroup class also inherits the Task class and operates as an independent task, and has a

TaskQueue instance as a property for synchronous task execution. SyncTaskGroup also has add() method and

remove() method for registering and removing ISyncTask common interface of synchronous task.

Synchronous tasks registered in SyncTaskGroup guarantee sequential processing in TaskQueue. What is

important in synchronous tasks is a method to waiting the execution of other tasks for a certain period of time

without interfering with the execution of other tasks. Because if it operates like Arduino's delay() function to

wait for a certain amount of time, it affects all other asynchronous tasks. It guarantees independence from other

asynchronous tasks and defines DelayTask class for synchronous waiting. DelayTask class is a class that

implements ISyncTask, a common interface for synchronous tasks, the start() method starts a synchronous task

and waits while wait() is true. The SyncTask class has a callback property to save and call the client's

synchronous task, and works the same as DelayTask.

164 Framework design for efficient Arduino program development

Figure 1. The class diagram of the designed framework

Figure 2 shows some codes of AsyncTaskGroup class and SyncTaskGroup class. Both classes are

implemented by overriding the virtual method run() of Task. The run() method of the AsyncTaskGroup class

calls all run() method of the taskList collection, and the run() method of the SyncTaskGroup class is stored in

the TaskQueue and executed sequentially.

Figure 2. Some codes of AsyncTaskGroup class and SyncTaskGroup class

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 162-169 (2022) 165

3. Framework test

Figure 3 shows the code that executes asynchronous task on the PC. The cbAsyncTask1() function is a

client-independent task for execution and is passed as the first argument of the Task object. The second

argument of the Task object is the time (ms) to repeat this task, and the code is executed every 2 seconds.

Figure 3. The code that executes asynchronous task on the PC

Figure 4 shows three asynchronous tasks executed on PC. Independent client task cbAsyncTask1(),

cbAsyncTask2(), cbAsyncTask3() functions are created as Task objects and registered as AsyncTaskGruop

objects. The three tasks run independently, and task 1 runs every 1 second, task 2 runs every 2 seconds, task 3

runs every 3 seconds. If you check the fourth digit for the output time in milliseconds, you can check that it is

independently executed at the same time.

Figure 4. Three asynchronous tasks executed on PC

166 Framework design for efficient Arduino program development

Figure 5 shows three synchronous tasks and three standby tasks performed on the PC. Task 1 is executed and

task 2 is executed 1 second later. Task2 is executed and task3 is executed 2 seconds later. Since Task3 was

executed and all tasks were executed 3 seconds later, repeat from task 1. In this case, since all three synchronous

tasks (tasks 1, 2, 3) and three standby tasks (1 second, 2 seconds, 3 seconds) are executed sequentially, the

order does not change. If the synchronous operation is performed below 1 ms, it takes a total of 6 seconds

because it takes time only for the standby operation. Sequential tasks are registered as SyncTaskGroup objects

to run synchronously. Synchronous group registration is registered by calling the add() method, and the order

of synchronous operations is important, so it must be registered in the execution order. The run() method of the

SyncTaskGroup object ensures that registered synchronous tasks are executed in order using TaskQueue.

Figure 5. Three synchronous tasks and three wait tasks

4. Framework Results

For checking whether the framework designed in the Arduino program works well, executed 3 independent

tasks. The first task is to periodically output data to the serial device, the second task is to receive data when

the user sends data to the Bluetooth in real time, and the third task is to turn the LED on and off. The third task

again consists of four sequential tasks that turn the LED on and off. The four sequential tasks consist of turning

on LED No. 1, waiting for No. 2 for 1 second, turning off No. 3 LED, and waiting for No. 4 for 1 second.

Figure 6 shows the code that executes three independent tasks using the designed framework. SoftwareWerial

is used to receive real-time Bluetooth data, and AsyncTaskGroup is used to register three independent tasks as

one group. Also, when the user sends the string “Hello” to Bluetooth in real time, the string is output to the

serial monitor and the LED on/off is repeated every second. It can also be seen that the time is periodically

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 162-169 (2022) 167

printed every 2 seconds on the serial monitor.

Figure 6. The code that executes three independent tasks using the designed framework

Figure 7 is a pictorial representation of three tasks that are executed asynchronously. These three

asynchronous operations theoretically run at the same time. Task 3, which turns the LED on and off, uses a

SyncTaskGroup object to group multiple sequential tasks into a single independent task.

168 Framework design for efficient Arduino program development

Figure 7. Execution of three asynchronous tasks

5. Conclusion

A good Arduino program should be able to systematically manage the execution order. Arduino was made

for easy programming, but as the number of control parts increases, the complexity of the program continues

to increase. By systematically managing the execution order, the complexity of the program can be reduced

and easy-to-understand code can be written. Various tasks can be executed independently or as dependents. A

framework provides a good design to manage these tasks systematically. The Arduino framework proposed in

this paper is designed to simplify the program structure and to configure various tasks easily. The design

framework of this paper is largely composed of two types: synchronous execution and asynchronous execution.

These two execution methods can be combined to create several independent and dependent execution routines.

Asynchronous tasks are independently executed tasks and are managed by AsyncTaskGroup, while

synchronous tasks are dependently executed tasks and are managed by SyncTaskGroup. AsyncTaskGroup

instance and SyncTaskGroup instance are instances of the same Task and can be used in combination with

another task. DelayTask, which implements the ISyncTask interface, is designed to allow waiting for a certain

period of time without interfering with the execution of other tasks.

References

[1] Hongyong Kim, Donggi Yoon and Seungjung Shin, “Development of Smart Multi-function Ground Resistivity

Measuring Device using Arduino in Wind Farm”, The Journal of The Institute of Internet, Broadcasting and

Communication(JIIBC), Vol. 19, No. 6, pp.65-71, Dec. 2019.

DOI: https://doi.org/10.7236/JIIBC.2019.19.6.65

[2] Donghwan Gong and Seungjung Shin, “Analysis of Arduino Timer Callback for IoT Devices”, The Journal of The

Institute of Internet, Broadcasting and Communication (IIBC), Vol. 18, No. 6, pp.139-143, Dec. 2018.

DOI: https://doi.org/10.7236/JIIBC.2018.18.6.139

[3] Donghwan Gong, “IoT Device Testing for Efficient IoT Device Framework”, The Journal of The Institute of Internet,

Broadcasting and Communication(JIIBC), Vol. 12, No. 2, pp. 77-82, Mar. 2020.

DOI: http://dx.doi.org/10.7236/IJIBC.2020.12.2.77

[4] Vera Suryani, Selo Sulistyo and Widyawan Widyawan, “Internet of Things (IoT) Framework for Granting Trust

among Objects”, Journal of Information Processing Systems, Vol. 13, No. 6, pp. 1613-1627, Dec. 2017.

DOI: https://doi.org/10.3745/JIPS.03.0088

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 162-169 (2022) 169

[5] Hongyong Kim and Seungjung Shin, “A Study on Smart Soil Resistance Measuring Device for Safety Characterized

Ground Design in Converged Information Technology”, The Journal of The Institute of Internet, Broadcasting and

Communication (IIBC), Vol. 19, No. 1, pp.203-209, Feb. 2019.

DOI: https://doi.org/10.7236/JIIBC.2019.19.1.203

[6] Ohseok Kwon and Keehwan Kim, “Implementation of Smart Sensor Network System Based on Open Source

Hardware”, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 17, No. 1,

pp.123-128, Feb. 2017.

DOI: https://doi.org/10.7236/JIIBC.2017.17.1.123

[7] Seokjin Im and Heejoung Hwang, “Design and Development of Framework for Wireless Data Broadcast of XML-

based CCR Documents”, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 15,

No. 5, pp.169-175, Oct. 2015.

DOI: http://dx.doi.org/10.7236/JIIBC.2015.15.5.169

[8] Kyongdeck Jeon and Seungjung Shin, “Proposal for Safety Management of Formwork Construction Using IT

Technology”, The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 20, No. 6,

pp.93-99, Dec. 2020.

DOI: https://doi.org/10.7236/JIIBC.2020.20.6.93

[9] Arduino, https://www.arduino.cc/

[10] Architecture framework, https://en.wikipedia.org/wiki/Architecture_framework

