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Abstract

In the paper, we propose a TSCH-based scheduling scheme for IEEE 802.15.4e, which is able to perform the 
scheduling of its own network by avoiding collision from interference network cluster (INC). Firstly, we model a 
bipartite graph structure for presenting the slot-frame (channel-slot assignment) of TSCH. Then, based on the 
bipartite graph edge weight, we utilize the Hungarian assignment algorithm to implement a scheduling scheme. 
We have employed two features (maximization and minimization) of the Hungarian-based assignment algorithm, 
which can perform the assignment in terms of minimizing the throughput of INC and maximizing the throughput 
of own network. Further, in this work, we called the scheme “dual-stage Hungarian-based assignment 
algorithm”. Furthermore, we also propose deep learning (DL) based deep neural network (DNN) scheme, where 
the data were generated by the dual-stage Hungarian-based assignment algorithm. The performance of the DNN 
scheme is evaluated by simulations. The simulation results prove that the proposed DNN scheme provides similar 
performance to the dual-stage Hungarian-based assignment algorithm while providing a low execution time.

Keywords: TSCH, IEEE802.15.4e, Interference Network Cluster(INC), Hungarian Assignment Algorithm, Deep 
Learning

1. Introduction
The scarcity of spectrum is a burning issue over the world. It has occurred with the increasing uses of the 

unlicensed industrial, scientific, and medical (ISM) radio bands. According to the expert report, mobile devices 

have been increased from 8 billion in 2016 to 11.5 billion in 2021. As a result, data flow from these devices 

has grown from 7.2 to 49.0 exabytes per month [1]. In the meantime, the internet of things (IoT) applications 

is also increasing. The industrial internet of things (IIoT) is a promising application of IoT. IIoT uses the ISM 

band to develop new technology, establish short-range communication, device-to-device communication, etc. 

[2].

  According to IEEE 80215.4e, the TSCH (time-slotted channel hopping) is a useful resource in the industrial 

internet of things (IIoT). TSCH works with a slot-frame structure of numerous channel-offsets and numerous 

slot offsets [3],[4]. It is gaining popularity in industrial applications due to its simple architecture and low 

power consumption. The TSCH follows the media access control (MAC) mechanism, which covers the 

reconfiguration, enumeration, composition, and data transmission [5]. The slot frame is the central 
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communication unit of TSCH; a pair of nodes is needed for data transmission. A slot frame is a series of time 

slots that are repeated continually. A different channel is assigned pseudo-randomly to each timeslot. The 

schedule defines which node to interact with the which neighbor node and what channel offset should be used 

for this transmission [6].

  At present cross-technology interference is another vital issue due to the excessive use of the unlicensed 

band, such as wi-fi conflicts with Bluetooth. TSCH-based scheduling method utilizes the channel hopping 

method to solve these coexistence issues [7],[8]. Most of the TSCH-based scheduling schemes consider their 

own network's performance (e.g., optimal throughput, accurate channel state, latency, etc.) without considering 

interference from surrounding networks or noise from other sources [9]. However, channel hopping from one 

to the next is not an effective solution in a pragmatic scenario since all frequencies face different interference 

levels [10],[11]. Furthermore, in a practical context of the wireless network, channels follow random nature, 

which is defined by different mathematical algorithms considering interference [12].

   In this paper, we propose a TSCH-based scheduling algorithm, which can observe the behavior of the 

surroundings interference networks. Here, we consider two networks: the first one is known called "own 

network," and the second one is unknown, called "interference network cluster (INC)", which may also include 

interferences (e.g., noise, microwaves) from other sources [13], [14]. Furthermore, the slot-frame structure of 

TSCH-based scheduling is modelled by a bipartite graph for establishing channel slot assignment of networks, 

where edge weight is considered both network's (own network and INC) throughput. By utilizing the bipartite 

edge weight, we have proposed dual-stage Hungarian-based assignment (one for INC and another for own 

network). The proposed method can perform the TSCH-based scheduling by avoiding collisions from INC's 

by maximizing the own network's throughput, minimizing the INC's throughput, and establishing a relation 

between them.

  In the last couple of years, deep learning (DL)-based algorithms have been utilized in the application and 

management of wireless communication. We got a complete outline regarding DL algorithms to the application 

of wireless resource allocation from the study in [15]. The study presents the limitations of traditional 

optimization methodologies as well as the potentialities of DL paradigms in wireless networks. Furthermore, 

we observed that the DL-based DNN scheme provided an outstanding performance in wireless power 

communication networks (WPCN). Where the authors formulated problems regarding power allocation to the 

communication networks [16] and energy beamforming vector in multiple antennas [17], both were solved by 

the iterative sequential parametric convex approximation (SPCA) algorithm. The supervised offline training 

of the DL-based DNN scheme was performed by SPCA-based training data. After completing the offline 

training, in the testing phase, the DNN performed similarly to the SPCA and contributed to the reduction of 

computing time. 

  According to the aforementioned discussion, the objective of this paper is to incorporate a DL method for 

the TSCH-based scheduling, which can provide the same performance to the dual-stage Hungarian-based 

scheduling scheme while reducing the execution time of scheduling.

  The contributions of this paper can be summarized as follows:

· We model a TSCH network example coexistence with INC and formulate algorithms to produce their 

throughputs (own network and INC) as well as make an interconnection between them.

· We present a bipartite assignment (slot and channel assignment) graph model for the slot-frame structure 

of TSCH-based scheduling. 

· Based on the bipartite graph edge weight information (throughput of own network and INC), we propose 

a dual-stage Hungarian-based assignment algorithm for executing TSCH-based scheduling, which is able 

to make data transmission scheduling and avoid collision between own network and INC. Furthermore, 



TSCH-Based Scheduling of IEEE 802.15.4e in Coexistence with Interference Network Cluster: A DNN Approach          55

this scheme can maximize the throughput of own network and minimize the throughput of INC.

· We propose a deep learning-based DNN scheme for TSCH-based scheduling to reduce the execution time. 

The proposed DNN scheme uses the training data obtained by the dual stage Hungarian-based assignment 

algorithm to avoid a collision from INC. Thus, the proposed DNN scheme correctly emulates the dual-

stage Hungarian-based scheduling scheme and reduces the execution time of scheduling.

· The performance of the DNN scheme is verified by Simulation. The simulation results show that the 

proposed DNN scheme exhibits a similar performance to the dual-stage Hungarian-based scheduling 

algorithm as well as provides an additional contribution to reduce the computational time.

The remainder of the paper is arranged as follows. In Section 2, we demonstrate the system model and problem 

statement. In Section 3, we describe the proposed dual-stage Hungarian algorithm-based scheduling scheme. 

In Section 4, we delineate the training of the DNN scheme and the classification of the dataset. In Section 5, 

performance of the proposed scheme is illustrated and verified by simulations. Finally, Section 6 concludes 

this paper.

  

2. System Model

  In this section, we describe the network model, state the mathematical equations for the problem formulation 

and channel model.

2.1 Network Model

  In this paper, we consider the TSCH network consists of N nodes called the own network and a second 

unknown network called the interfering network cluster (INC), which may include noise from different sources 

(e.g., microwaves, noise generators, and jammers) [13],[14]. We presume that both networks will have similar 

priorities and rights to use the spectrum because we focus on unlicensed bands. However, as the INC is 

unknown, the own network has no idea about what technologies are being used in INC, traffic types, channel 

state information (CSI), etc. The TSCH network coexistence with INC is shown in Figure 1.

Figure 1. Example of TSCH network coexistence with INC

Furthermore, the TSCH uses time and frequency diversity. It's the combination of time division multiple 

access (TDMA) and frequency-division multiple access (FDMA) techniques and this is core concept of TSCH-

based scheduling. Based on this concept, all N nodes of own TSCH network can communicate with one another 

on channel � ∈ ℂ. Each channel is separated into time slot � ∊ �. S time slots and ℂ channels are available 

for each slot-frame, � ∈ � in the TSCH schedule, as shown in Figure 2. 
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Figure 2. Corresponding slot-frame of TSCH-based scheduling

2.2 Problem Formulation

In this paper, for TSCH-based scheduling, we consider all nodes of own network because the information 

of INC is entirely unknown such as any applied protocols, features, channel conditions, etc. We only know if 

any of the nodes of INC uses a channel at a given time of a slot frame. We assume that ��,�
�
= 1  only if the 

INC used channel c, at slot s, in frame f, at time (f ,s).

In this work, a centralized scheduler is considered for TSCH-based scheduling, and the own network cannot 

schedule two transmissions (TX) actions between two nodes simultaneously using the same channel. We also 

assume that the INC is strong enough to collide with the transmission (node pair communication) of own 

network.

We also define that transmission of the own network between two nodes on a channel c at a time (f, s), is 

successful only if the own node is transmitting at the same time in that channel and no INC node is transmitting. 

Every node, � ∊ � of own network executes a transmission action ���,�
�,�

uses the channel c, at slot s, for 

slot-frame f. Own node is transmitting at the time in that channel and no interfering node is transmitting. Here

we use ��,�
�,�

  to determine if an own packet could be successfully delivered or not. 

                    ��,�
�,�

= 1, �� ���,�
�,�

= 1 ∧ ��,�
�
= 0                                 (1)

Similarly, the communication of INC is successful if ��,�
��,� = 1. We can have ��,�

��,� = 1 in the following 

case: 

                    ��,�
��,� = 1, �� ���,�

�,� = 0 ∧ ��,�
� = 1                                (2)

2.3 Channel Model

We design and develop a channel model to fulfill the condition of equation 1 and equation 2. As we discussed 

earlier, our goal is to propose a bipartite graph-based solution of the TSCH network. To establish the bipartite 

graph, we need to know the knowledge of throughput. Throughput is considered the main component for 

bipartite edge weight to solve the TSCH-based scheduling of channel and slot assignment [3],[4].

As INC is unknown, we do not have any knowledge about their channel state information (CSI) and other 

parameters [13],[14]. In this work, we have considered the throughput of INC as a random variable. We use 

the linear congruential generator for constituting INC throughput. A linear congruential generator (LCG) is an 
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algorithm that generates a series of pseudorandom integers using a piecewise linear equation. We have found 

the most well-known pseudorandom number generator algorithm [18]. The throughput of INC will be executed 

by the following equation of linear congruential generator (LCG) such that we have 

                     �� = (����� + �)(��� �)                                 (3)

where M is modular, � = {1, . . . , ℂ�}, multiplicator a and q are two suitable chosen integers. We can have the 

uniform random variable after scaling, Ui  as following: 

                               �� =
��

�
                                              (4)

Another goal is to minimize the INC throughput for enhancing the reliability of own network. The INC’s 

throughput can be minimized by the following equation:

                       �∗ = ���∑ ∑ ���∈ℂ�∈�                                 (5)

The own network channel state of each � ∈ ℂ at slot � ∊ � is defined by � = ��,� = |��,�|
� where ��,�

is the channel gain, which is related to the fading phenomenon [4]. In this paper we consider that channel gain 

will follow Rayleigh fading and that it will be determined by the probability density function (pdf) below:

                             ��(�) =
��

�
�
���

�                                               (6)

where � = �[��], and R is a random variable.

The transmission power � is assumed to be constant, and the throughput of own network is determined
based on the minimization of INC throughput �∗ with the Shannon’s formula as shown below: 

                       ��(�) =
�

�
���(1 +

��

�����
∗)                                     (7)

where � is the receiver signal's bandwidth, l denotes packet size, and �� means noise variance.

Then, we maximize the own network throughput by following equation:

                       �∗ = ���∑ ∑ ���∈ℂ�∈�                                  (8)

3. The Proposed Dual-Stage Hungarian Based Assignment Algorithm

In this section, we describe the modeling of a bipartite graph for executing slot channel assignment of 

TSCH-based scheduling. Based on the bipartite model of the TSCH slot frame structure, we utilize the dual-

stage Hungarian-based assignment techniques to execute TSCH-based scheduling, which is able to perform 

the transmission schedule of own network node pairs without collision from INC.

According to graph theory-based mathematical structure, a bipartite graph has two independent sets of 

vertices: top and bottom. Every edge connects a vertex in the top to one on the bottom. It is used for modeling 

relationships between two different classes of objects [19]. In recent times, the bipartite graph is a promising 

application of the TSCH based scheduling for presenting an assignment of slots and channels for successful 

node pair transmission (TX) [3,4], where throughput is considered the edge's weight of a bipartite graph [4].

  In this paper, we consider a bipartite graph ℬ = (�, ℂ, �) correspond to the slot-frame matrix in Figure 2

The set of channels, � ∈ ℂ is the top vertexes of bipartite graph, and the set of slots � ∊ � is the bottom 
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vertexes of bipartite graph  ℬ. The set of edge weights is considered  � = {� = (�, �)| � ∈ �, � ∈ ℂ}  as the 

throughputs of own network and INC.

Figure 3. Bipartite graph corresponding to the Figure 2

Based on the knowledge of bipartite edge weight, we propose a dual-stage Hungarian-based assignment 

algorithm for executing TSCH-based scheduling to avoid collision between own network and INC. We 

consider bipartite edge weights are the throughput of own network and INC (section 2.3) as well as the 

negligible upper bounds 2� (L is the number of node-to-node edge Figure:1)

  The cost matrix of Hungarian algorithm is the total number of edges � ∗ ℂ of the bipartite graph. Firstly, 

the INC throughput �� was considered as the edge weight of the bipartite graph. The Hungarian algorithm 

performed the assignment according to the minimization of edge weight of the bipartite graph and we obtained 

the ��,�
�

and minimization of INC throughput, �∗ . Secondly, the own network throughput �� will be 

calculated based on the  �∗ by considering bipartite edge weight. The Hungarian again performed the 

scheduling task based on maximization of bipartite edge weight and we obtained the transmission of own 

network, ���,�
�,�

and obtained throughput of own network, �∗. Though most of the collisions between own 

network and INC were mitigated by this technique, every transmission of own network ���,�
�,� was checked 

channel by channel and slot by slot. If INC is considered, ��,�
�

the specifically assigned slot by own network, 

which means that duplicate schedule had found in that time and own network shifted their scheduling on the 

next slot according to the second highest edge weight value. 

Algorithm 1: Dual-Stage Hungarian-Based Assignment Algorithm

1: Begin

2: //INITIALIZATION

3: for each  � ∈ ℂ, � ∈ � and � ∈ �:

4:        Run linear congruential generator (LCG) to obtain INC throughput ��
5:        Run Hungarian algorithm based on minimization �� of bipartite edge weight 

           %where INC throughput used as bipartite edge weight

6:        Obtain ��,�
� and �∗

7:        Own network throughput, �� will be calculated

8:        Run Hungarian algorithm according to maximization �� of bipartite edge weight

          % where own network throughput used as bipartite edge weight

9:        Obtain ���,�
�,� and �∗

10:       if ���,�
�,�=��,�

� , 

               then ���,�
�,� will happen in next slot 

               %based on second maximized bipartite edge weight
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11:          else ���,�
�,�

  happen in the assigned slot according to step 8

12:      end if

13:     ensure:  ���,�
�,� = 1 ∧ ��,�

� = 0 and    ���,�
� = 0 ∧ ��,�

� = 1

14: end for

15: //MAIN LOOP:

16: Generate 10,000 data frames for DNN training

4. The Proposed Deep Learning Based DNN Scheme 

In this section, we propose a deep learning-based DNN scheme that uses the training data from a dual-stage 

Hungarian-based assignment algorithm shown on Figure 4. We generated a total of 10,000 data frames by 

using the dual-stage Hungarian-based assignment algorithm (Algorithm 1) and divided the dataset into three 

parts 60% for training, 20% for validation and 20% for testing. Validation is the unbiased method.  That is, 

assessment procedure deals with as to how well our model learns the knowledge during training. Testing is the 

actual procedure for analyzing neural network performance. After finishing supervised offline training of DNN, 

the DNN scheme performs the scheduling by learning the kinship between the input and output. We utilize the 

scheme for every new value of the throughput of own network �� to find the optimal solution of ���,�
�,�

.

Figure 4. Overall structure of the proposed DNN-based scheme 

5. Performance Evaluation 

We compared the outcomes of DNN with the Hungarian-based assignment algorithm (HG) to demonstrate 

the efficiency of the proposed DNN scheme. The simulations were performed in two steps: first, we executed 

algorithm 1 for generating enough samples data; second, after obtaining data samples, the DNN training was 

performed. Algorithm 1 for data set generation was carried out in MATLAB on a PC with an Intel Core i7 

processor and 8 GB RAM. After getting data samples, the supervised offline training of DNN was executed in 

Python by utilizing the Keras and NumPy libraries.

2.1 Execution of TSCH-Based Scheduling

The primary goal of this paper is to implement TSCH-based scheduling to avoid Collison from INC. The 
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details of the model are described in Algorithm 1. The DNN training data was generated from this model to 

train the DNN. The following parameters are considered in Table 1 for establishing Algorithm 1.

Table 1. Parameters for algorithm 1

Parameters Specification

Number of Channels, ℂ 12

Number of Slots, � 16

Number of Data Frames, � 10,000

Bandwidth, β 1 MHz

Bits in Each Packet l 1000

Transmission Power, p 10 mw

2.2 Building a DNN Scheme

We have considered a DNN a model with one input layer, multiple hidden layers, and one output layer. 

The number of input features of DNN is the total number of bipartite edge weight, which means the total 

number of bipartite edge weights is the multiplication of the total number of channels and the total number of 

slots, ℂ ∗ �. The output considers how many times the own network uses the channels, which means that the 

total number output of DNN is the total number of channels, ℂ . We have used the rectified linear unit (ReLU) 

activation function for every hidden layer to obtain minimal min square error (MSE) with little difficulty. The 

specification of the proposed DNN scheme is given in Table 2. 

Table 2. DNN specification

Parameters Specification

Number of Input Features 192

Number of Hidden Layers 4

Number of Neurons in Each Layer 800,1600,1200,800

Number of Outputs 12

Learning Rate 0.001

Batch Size 100

Number of Epochs 1000

2.3 Assignment Method: TSCH-Based Scheduling 

Figure 3.5 illustrates the example of transmission, ���,�
�,� assignment of own network that can avoid 

a collision from INC. Here green color indicates the transmission assignment of own network executed based 

on the maximization of own network throughput. The red color indicates that INC uses the slots ��,�
� ; it was 

executed based on the minimization of INC throughput. Lastly, the own network checked channel by channel 

and slot by slot. For this frame, we observed that the duplicate assignment was executed on channel 3. Both 

own network and INC used slot 3 for the channel 3 while using the above checking method when own network 

found INC in the same slot; then it shifted its transmission schedule to the next slot 2 based on the second 

highest of own network throughput.
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Figure 5. Example of cell assignment

2.4 Throughput Measurement 
Figure 6 shows the average maximized throughput of own network and average minimized throughput of 

INC for different channels. Our proposed dual-stage Hungarian-based assignment is able to maximize the own 

network throughput based on the minimization of INC throughput. It increases network reliability for data 

transmission.

Figure 6. Throughput of own network and INC

2.5 DNN model accuracy

  Accuracy is the vital part of the deep learning-based DNN scheme. It defines that how much the proposed 

learning-based scheme learns the original method. We considered an accuracy metric based on the transmission 

of own network as given in equation 8. To do this, we firstly determined the accurate parameters based on the 

following method. The transmission assignment of own network ���,�
� is the output of dual-stage Hungarian-

based scheme is an integer but predicted output of DNN, ���,�
��

is not an integer value. For alleviating this 
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problem, we used the round function as follows: If ���,�
� − �����(���,�

��
)= 0, it indicates as accurate, and 

���,�
� − �����(���,�

��
)≠ 0 indicates it is not accurate.

If test samples are ℕ�, and non-zero or not accurate parameters are indicated by ℙ, accuracy of DNN 

can be determined with the following equation:

                             A������� =
ℕ�∗ ℂ�ℙ

ℕ�∗ℂ
∗ 100%                                                 (9)

2.5 DNN performance

We measured the accuracy for 1000 test samples and achieved around 90% accuracy of the proposed deep 

learning-based DNN scheme. The over all performance of proposed DL-based DNN scheme is summarized in 

Table 3.

Table 3. DNN performance

Parameters Specification

Accuracy 90%

HG Execution Time Per Sample 250 ms

DNN Execution Time Per Sample 30 ms

MSE 0.023

  Furthermore, the figure 7 shows the performance of the proposed DNN scheme based on measuring the 

throughput for own network and INC. It reveals that the proposed deep learning-based DNN scheme correctly 

emulates the proposed dual-stage Hungarian-based assignment scheme. DNN is a learning-based scheme and 

learns the training data from a dual-stage Hungarian (HG) based scheduling scheme; that is a reason why HG 

shows the optimal and DNN shows the suboptimal for the throughput of both networks.

Figure 7. Performance between DNN and HG in terms of throughput

6. Conclusion

In the paper, we proposed a dual-stage Hungarian-based assignment algorithm that can smartly perform the 

TSCH-based scheduling of own network without collision from INC. We have also utilized a deep learning-

based DNN scheme, which provided similar performance to those of TSCH-based scheduling, and it 

contributed to reducing the execution time of scheduling. The training data set was generated based on a dual-

stage Hungarian-based scheduling scheme which can maximize the throughput of own network and minimize

the INC throughput. The DNN was trained by this dataset; it achieved almost 90% accuracy and reduced 80% 

execution time of the original scheme. Moreover, the deep learning-based DNN scheme showed an efficient 

performance for the TSCH-based scheduling.
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