
International Journal of Internet, Broadcasting and Communication Vol.14 No.1 10-18 (2022)
http://dx.doi.org/10.7236/IJIBC.2022.14.1.10

Design and Implementation of APFS Object Identification Tool for Digital

Forensics

Gyu-Sang Cho

Professor, Dept. of Computer&Software, Dongyang University, Korea

cho@dyu.ac.kr

Abstract

Since High Sierra, APFS has been used as the main file system. It is a well-established file system that has

been used stably thus far. From the perspective of digital forensics, there are still many areas to be investigated.

Apple File System Reference is provided to the apple developer site, but it is not satisfactory to fully analyze

APFS. Researchers know more about the structure of APFS than before, but they have not yet fully analyzed

its structure to a perfect level about it. In this paper, we develop APFS object identification tool for digital

forensics. The most basic and essential object identification and analysis of the APFS filesystem will be

conducted with the tool. The analysis in this study serves as the background for an analysis of the checkpoint

operation principle and structure, including the more complex B-tree structure of APFS. There are several

options for the developed tool, but the results of two use cases will be shown here. Based on the implemented

tool, it is hoped that more functions will be added to make APFS a useful tool for faster and more accurate

analyses.

Keywords: Digital Forensic, File Cluster, Object Header, APFS Filesystem, macOS.

1. Introduction

The Apple File System is the default file format used on Apple platforms. This file system is the successor

to HFS Plus, and some aspects of its design intentionally follow HFS Plus to enable data migration from HFS

Plus to the Apple File System. Other aspects of its design address limitations of HFS Plus and enable features

such as the cloning of files, snapshots, encryption, and the sharing of free space between volumes [1].

A representative study in the analysis of APFS's file system is the Reference [2], representing the first case

of a detailed structural analysis of the APFS file system and serving as valuable data for structural analyses of

the APFS file system. Essentially, Apple's Developer Reference provides information about APFS, but it does

not provide enough data for an analysis [3]. The literature on the APFS file system to help with forensic

analyses was conducted by the authors of Reference [4]. They also proposed different approaches to identify

and recover deleted files on an APFS file system. They implemented their approaches as a proof of concept

IJIBC 22-1-2

Manuscript Received: October. 20, 2021 / Revised: October. 24, 2021 / Accepted: October. 27, 2021
Corresponding Author: cho@dyu.ac.kr
Tel: +82-54-630-1119, Fax: +82-54-630-1179
Professor, Dept. of Computer&Software, Dongyang University, Korea

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 10-18 (2022) 11

tool and presented AFRO as an open-source implementation of a forensic file recovery tool for APFS to

implement all of the presented methodologies [5].

There are also a few open sources that are provided to help comprehend the structure of APFS. The “APFS

FUSE Driver for Linux” project is a read-only FUSE driver for the new Apple File System and a collection of

libraries to mount, dump and analyze APFS volumes and containers; it also supports software encrypted

volumes and fusion drives [6]. The “libfsapfs” project is a library with which to access APFS read-only

supported formats with the LGPLv3+ license. This library supports the APFS format features of ZLIB

(DEFLATE) compression, LZVN compression, encryption, and extended attributes [7]. The “Apfsprogs”

project is a suite of userland software for working with the Apple File System on Linux, but only mkfs and

fsck tools are available currently [8]. There are also commercial software packages such as MacDrive that read

and write Mac disks from Windows [9], as well as APFS for Windows by Paragon Software Paragon

Technologie GmbH [10].

Researchers know more about the structure of APFS than before, but they have not yet fully analyzed its

structure to a perfect level. Compared to the NTFS file system, the software provided is still limited. In this

paper, the most basic and essential object identification, and analyses in the APFS filesystem will be conducted.

The analyses here will become the background of an analysis of the checkpoint operation principle and

structure, including the more complex B-tree structure of APFS.

2. Object’s data type

Every header used at the beginning of all objects is composed of five members, i.e., o_cksum[], o_oid,

o_xid, o_type, and o_subtype. cksum represents the Fletcher 64 checksum of the object, o_oid represents the

object’s identifier, o_xid represents the identifier of the most recent transaction in which this object was

modified. o_type represents the object’s type and flags; the object type is a 32-bit value for which the low 16

bits indicate the type and the high 16 bits are object type flag flags using the values listed in the Object Type

Flags, i.e., OBJ_VIRTUAL (0x00000000), OBJ_EPHEMERAL (0x80000000), OBJ_PHYSICAL

(0x40000000), OBJ_NOHEADER (0x20000000), OBJ_ENCRYPTED (0x10000000), and

OBJ_NONPERSISTENT (0x08000000). o_subtype indicates the type of data stored in the data structure, such

as a B-tree. For example, a node in a B-tree that contains volume records has the type

OBJECT_TYPE_BTREE_NODE and subtype OBJECT_TYPE_FS.

(a)Structure of obj_phys_t (b) Object type flags

12 Design and Implementation of APFS Object Identification Tool for Digital Forensics

(c) Object flags

Figure 1. APFS object’s header structure and object types & flags [4]

Every header used at the beginning of all objects is composed of five members, i.e., o_cksum[], o_oid,

o_xid, o_type, and o_subtype. cksum represents the Fletcher 64 checksum of the object, o_oid represents the

object’s identifier, o_xid represents the identifier of the most recent transaction in which this object was

modified. o_type represents the object’s type and flags; the object type is a 32-bit value for which the low 16

bits indicate the type and the high 16 bits are object type flags using the values listed in the Object Type Flags.

o_subtype indicates the type of data stored in the data structure. The same values used for o_type are used here

as well.

2.1 Object Types

Values used as types and subtypes according to the object header’s obj_phys_t structure (Figure 1 (a)) are

as follows. OBJECT_TYPE_NX_SUPERBLOCK is used for a container superblock with the structure of

nx_superblock_t. OBJECT_TYPE_BTREE and OBJECT_TYPE_BTREE_NODE are used for the B-tree root

and node with the structure of tree_node_phys_t in both cases. OBJECT_TYPE_SPACEMAN is used as a

space manager with the structure of spaceman_phys_t. OBJECT_TYPE_SPACEMAN_CAB is used for a

chunk-info address block with the structure of cib_addr_block and OBJECT_TYPE_SPACEMAN_CIB is

used for a chunk-info block with the structure of cib_addr_block. Both are used by the space manager.

OBJECT_TYPE_SPACEMAN_BITMAP is used for a free-space and bitmap by the space manager.

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 10-18 (2022) 13

OBJECT_TYPE_SPACEMAN_FREE_QUEUE is used for a free-space queue by the space manager; it is a

mapping from spaceman_free_queue_key_t to spaceman_free_queue_t.

OBJECT_TYPE_EXTENT_LIST_TREE is used for an extents-list tree, which is a mapping from paddr_t

to prange_t, in which the keys indicate an offset of the logical start of the extent and the value denotes the

physical location of the stored data. OBJECT_TYPE_OMAP is used for an object map as a type with the

structure of omap_phys_t and a tree that stores the records of an object map mapping from omap_key_t to

omap_val_t as a subtype. OBJECT_TYPE_CHECKPOINT_MAP is used for a checkpoint map with the

structure of checkpoint_map_phys_t. OBJECT_TYPE_FS is used for a volume with the structure of

apfs_superblock_t. OBJECT_TYPE_FSTREE is used for a tree containing file-system records, in which the

keys and values stored in the tree vary. Each key begins with a type of j_key_t which indicates the type of that

key and value.

OBJECT_TYPE_BLOCKREFTREE is for a tree containing extent references, mapping from

j_phys_ext_key_t to j_phys_ext_val_t. OBJECT_TYPE_SNAPMETATREE is for a tree containing snapshot

metadata for a volume. OBJECT_TYPE_NX_REAPER is for a reaper with the structure of nx_reaper_phys_t.

OBJECT_TYPE_NX_REAP_LIST is for a reaper list with the structure of nx_reap_list_phys_t.

OBJECT_TYPE_OMAP_SNAPSHOT is for a tree containing information about snapshots of an object map,

with mapping from xid_t to omap_snapshot_t. OBJECT_TYPE_EFI_JUMPSTART is for the EFI information

used for booting. OBJECT_TYPE_FUSION_MIDDLE_TREE, and OBJECT_TYPE_NX_FUSION_WBC

are used for a tree used with a fusion device.

OBJECT_TYPE_ER_STATE is for an encryption-rolling state. OBJECT_TYPE_GBITMAP,

OBJECT_TYPE_GBITMAP_TREE, and OBJECT_TYPE_GBITMAP_BLOCK are for a general-purpose

bitmap with the structure of gbitmap_phys_t. OBJECT_TYPE_ER_RECOVERY_BLOCK is used to recover

from a system crash. OBJECT_TYPE_SNAP_META_EXT is for additional metadata about snapshots.

OBJECT_TYPE_INTEGRITY_META is for an integrity metadata object. OBJECT_TYPE_FEXT_TREE is

for a B-tree of file extents. OBJECT_TYPE_RESERVED_20, OBJECT_TYPE_INVALID, and

OBJECT_TYPE_TEST are not currently used [3].

2.2 Object Flags

Object flags (Figure 1 (b)) are used to provide additional information in the form of an o_type of the object

header representing the object’s type and flags, specifically the high 16 bits of the 32-bit object type. The value

is extracted from the object type by OBJECT_TYPE_FLAGS_MASK(0xffff0000).

There are three methods of storing objects at the container level depending on the object, i.e., ephemeral

objects, physical objects, and virtual objects. Ephemeral objects are stored in memory, physical objects are

stored at a specific block location on the disk, and virtual objects are stored on the disk at a block location

looked up using an object map. OBJ_VIRTUAL is for a virtual object, OBJ_EPHEMERAL is for an ephemeral

object, OBJ_PHYSICAL is for a physical object, OBJ_NOHEADER is for an object stored without an

obj_phys_t header, OBJ_ENCRYPTED is for an encrypted object, and OBJ_NONPERSISTENT is for an

ephemeral object that does not persist across the unmounting process [3].

2.3 Object subtype

The object’s subtype uses the uint32_t o_subtype of the obj_phys_t structure. The subtype indicates the

type of data stored in the data structure. For a B-tree, a node of a B-tree that contains volume records is of the

14 Design and Implementation of APFS Object Identification Tool for Digital Forensics

OBJECT_TYPE_BTREE_NODE type and the OBJECT_TYPE_FS subtype. The values of the subtype used

are identical to those used with “Object Types.”

With regard to “Object Types,” some are used only for a subtype. Examples include

OBJECT_TYPE_SPACEMAN_FREE QUEUE, OBJECT_TYPE_EXTENT_LIST_TREE,

OBJECT_TYPE_FSTREE, OBJECT_TYPE_BLOCK REFTREE, OBJECT_TYPE_SNAPMETATREE,

OBJECT_TYPE_FUSION_MIDDLE_TREE, OBJECT_TYPE_GBITMAP_TREE, and

OBJECT_TYPE_FEXT_TREE [3].

2.4 APFS Overall Configuration

Figure 2 shows the overall diagram of the APFS composition. When APFS parses the filesystem, the first

central structure is the “Container Superblock,” which contains pointers to the “Checkpoint Descriptor” and

“Checkpoint Data.” The “Checkpoint Descriptor” contains the “Checkpoint” itself and copies of older

“Container Superblocks.” The “Checkpoint Data” contains the “Space Manager,” “History Blocks,” and

“Reaper,” which show the data of the entire container at a given point. The “Space Manager” points to the

“Space Manager Internal Pool,” which points to the “Bitmap” in turn. The first “Container Superblock” stores

a reference to an “Object Map (OMAP)” B-tree that points to its “OMAP Root Node.” This B-tree contains

‘OMAP Entries,” which link object IDs to block offsets. The “Container Superblock” stores pointers to the

“Volume Superblocks” of all volumes in the filesystem. Each “Volume Superblock” points to the “Extentref

Tree,” its own ‘OMAP,” and a “Root Directory Node” for the particular volume [4].

Figure 2. APFS Overall configuration

3. Configuration of the APFS Object Identification Tool

3.1 Overview

The APFS Object Identification tool has four features, as depicted in Figure 3. “Object Header Parsing” is

a fundamental feature which parses the object header’s obj_phys_t structure as attributes, i.e., o_cksum[],

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 10-18 (2022) 15

o_oid, o_xid, o_type, and o_subtype, as explained in the previous section. “Searching Object Identifier” is

feature searching a target object identifier with the options of an object’s cluster number, the object’s type, and

the object’s subtype. The findings are listing in a command line (terminal) window as a view. The “Entire Disk

Searching” feature denotes a run-through of an entire disk cluster from cluster #0 to cluster #MAX_NO, which

is implemented when searching for an object’s clusters that have been erased, hidden, or corrupted. “Object

Tree Listing” is feature that lists selected items from the results, e.g., listing only an object’s id number; listing

an object’s id number and a cluster number; listing an object’s type and subtype, the object’s statistics, and the

object’s header and cluster contents, for instance.

Figure 3. Features of the APFS Object Identification Tool

3.2 Development Environments

l OS: macOS Big Sur version 11.6.1

l Application Type: macOS command line (terminal) program

l Disk Format: APFS

l Target Storage Device: USB memory(16GB)

l Disk Allocation Cluster Size: 4,096 bytes

l Programming Language: C/C++

l Programming Tools: Xcode v13.0(13A233)

The APFS Object Identification tool is designed to run in the command line(terminal) mode in macOS

with the C/C++ language using Apple’s XCode environment.

3.3 Command Line Options

There are three categories of command line options for the tool. These categories can be used alone or in

combination.

16 Design and Implementation of APFS Object Identification Tool for Digital Forensics

l Options for object’s attribute

“-oid” : to set the Object ID,

“-xid” : to set the Transaction ID

“-type” : to set the low 16 bits indicating the type using the values listed in Object Types

“-typeFlag” : to set the high 16 bits that are flags using the values listed in Object Type Flags

“-stype” : to set the subtype indicating the type using the values listed in Object Types

l Options for cluster numbers

“-all” : to set entire cluster searching

“-cls” : to set a cluster number

l Options for views

“-dir” : an option to list directory type

“-hex” : an option to list hexa-data of a cluster

“-stat” : statistics of an object’s option attributes

“-parse” : to parse of an object’s attributes using the cluster number(default).

3.4 Experimental Results

Only two experiments were performed selectively among various possible experiments. Experiment #1

assigned the command line option as “-type 0x02 -parse” and the directory name and file name. “-type 0x02”

is set to find the B-tree root node (OBJECT_TYPE_BTREE, 0x02). For the 0x02 option, numerous objects

are found when searching for objects, as shown in Figure 4(a). Given the many purposes of B-trees used in

APFS, copies left along with many objects were also found.

Experiment #2 assigned the command line option as “-cls 8 -hex” and the directory name and file name. “-

cls” is used for setting the cluster number, and “-hex” is used to list the contents of a cluster in the form of

hexa-data. In this case, “-cls 8” represents a container superblock. This block has the signature “NXSB” at

offset 0x20, as shown in Figure 4 (b).

International Journal of Internet, Broadcasting and Communication Vol.14 No.1 10-18 (2022) 17

(a) Experiment #1 (b) Experiment #2

Figure 4. Experiments with the APFS Object Identification Tool

5. Conclusions

In this paper, we designed and implemented an APFS Object Identification tool for a forensics analysis and

for education. Apple File System Reference is provided to the Apple developer site [1, 11], but it is not

satisfactory for use by developers. Nevertheless, several developers released the results of analyses of parts

that were not disclosed as documents as part of the development of the program [2-8]. These sources are very

helpful for a digital forensic analysis. In this paper, a tiny tool for analyzing APFS objects is developed. Despite

the fact that it has minor functions, it is the most basic and essential object identification and analysis tool

developed thus far. There are many options for the developed tool, but the results of two use cases were shown

here. Based on the implemented tool, it is hoped that more functions will be added to make APFS a useful tool

for rapid and accurate analyses.

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (NRF- 2019R1F1A1058902)

18 Design and Implementation of APFS Object Identification Tool for Digital Forensics

References

[1] Apple Developer, “About Apple File System,” https://developer.apple.com/documentation/foundation/

file_system/about_apple_file_system

[2] Kurt H. Hansen and Fergus Toolan, “Decoding the apfs file system,” Digital Investigation, No. 22, pp. 107–132,

2017.

https://doi.org/10.1016/j.diin.2017.07.003

[3] Apple File System Reference, https://developer.apple.com/support/downloads/Apple-File-System-Reference.pdf

[4] A. Dewald and J. Plum. APFS INTERNALS FOR FORENSIC ANALYSIS, 2018.

https://static.ernw.de/whitepaper/ERNW_Whitepaper65_APFS-forensics_signed.pdf

[5] Jonas Plum and Andreas Dewald. Forensic apfs file recovery. In Proceedings of the 13th International Conference

on Availability, Reliability and Security, pages 1–10, 2018

[6] Simon Gander, APFS FUSE Driver for Linux, https://github.com/sgan81/apfs-fuse

[7] Joachim Metz, libfsapfs, https://github.com/libyal/libfsapfs

[8] Ernesto Fernández, APFS for Linux, https://github.com/linux-apfs/apfsprogs

[9] MacDrive, https://www.macdrive.com/

[10] ParagonTechnologie GmbH, APFS for Windows by Paragon Software. https://www.paragon-

software.com/home/apfs-windows/

[11] Apple File System Reference, https://developer.apple.com/support/downloads/Apple-File-System-Reference.pdf

