DOI QR코드

DOI QR Code

Approximate Multiplier With Efficient 4-2 Compressor and Compensation Characteristic

효율적인 4-2 Compressor와 보상 특성을 갖는 근사 곱셈기

  • 김석 (건양대학교 의공학부) ;
  • 서호성 (전남대학교 전기전자통신컴퓨터공학부) ;
  • 김수 (전남대학교 전기전자통신컴퓨터공학부) ;
  • 김대익 (전남대학교 전기전자통신컴퓨터공학부)
  • Received : 2021.11.29
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

Approximate Computing is a promising method for designing hardware-efficient computing systems. Approximate multiplication is one of key operations used in approximate computing methods for high performance and low power computing. An approximate 4-2 compressor can implement hardware-efficient circuits for approximate multiplication. In this paper, we propose an approximate multiplier with low area and low power characteristics. The proposed approximate multiplier architecture is segmented into three portions; an exact region, an approximate region, and a constant correction region. Partial product reduction in the approximation region are simplified using a new 4:2 approximate compressor, and the error due to approximation is compensated using a simple error correction scheme. Constant correction region uses a constant calculated with probabilistic analysis for reducing error. Experimental results of 8×8 multiplier show that the proposed design requires less area, and consumes less power than conventional 4-2 compressor-based approximate multiplier.

근사 컴퓨팅은 효율적인 하드웨어 컴퓨팅 시스템을 설계하기 위한 유망한 방법이다. 근사 곱셈은 고성능, 저전력 컴퓨팅을 위한 근사 계산 방식에 사용되는 핵심적인 연산이다. 근사 4-2 compressor는 근사 곱셈을 위한 효율적인 하드웨어 회로를 구현할 수 있다. 본 논문에서는 저면적, 저전력 특성을 갖는 근사 곱셈기를 제안하였다. 근사 곱셈기 구조는 정확한 영역, 근사 영역, 상수 수정 영역의 세 영역으로 나누어진다. 새로운 4:2 근사 compressor를 사용하여 근사 영역의 부분 곱 축소를 단순화하고, 간단한 오류 수정 방식을 사용하여 근사로 인한 오류를 보상한다. 상수 수정 영역은 오차를 줄이기 위해 확률 분석을 통한 상수를 사용하였다. 8×8 곱셈기에 대한 실험 결과, 제안한 근사 곱셈기는 기존의 4-2 compressor 기반의 근사 곱셈기보다 적은 면적을 요구하면서 적은 전력을 소비함을 보였다.

Keywords

References

  1. Q. Xu, T. Mytkowicz, and N. Kim, "Approximate computing: A survey," IEEE Design & Test, vol. 33, no. 1, 2016, pp. 8-22. https://doi.org/10.1109/MDAT.2015.2505723
  2. D. Esposito, A. Strollo, E. Napoli, D. Caro, and N. Petra, "Approximate Multipliers Based on New Approximate Compressors," IEEE Transactions on Circuits and Systems I, vol. 65, no. 12, 2018, pp. 4169-4182. https://doi.org/10.1109/tcsi.2018.2839266
  3. M. Horowitz, "Computing's energy problem (and what we can do about it)," In IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, Feb. 2014, pp. 10-14.
  4. H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, "A comparative evaluation of approximate multipliers," In 2016 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH), July 2016, pp. 191-196.
  5. M. Ha and S. Lee, "Multipliers With Approximate 4-2 Compressors and Error Recovery Modules," IEEE Embedded System Letters, vol. 10, no. 1, 2018, pp. 6-9. https://doi.org/10.1109/les.2017.2746084
  6. C.-H. Chang, J. Gu, and M. Zhang, "Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 10, 2004, pp. 1985-1997. https://doi.org/10.1109/TCSI.2004.835683
  7. M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, "Low-power approximate multipliers using encoded partial products and approximate compressors," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3, 2018, pp. 404-416. https://doi.org/10.1109/jetcas.2018.2832204
  8. H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, "Hybrid Partial Product-based High-Performance Approximate Recursive Multipliers," IEEE Transactions on Emerging Topics in Computing (Early Access), 2020, pp. 1-6.
  9. S. Nambi, U. Kumar, K. Radhakrishnan, M. Venkatesan, and S. Ahmed, "DeBAM: Decoder Based Approximate Multiplier for Low Power Applications," IEEE Embedded System Letters, vol. 13, no. 4, 2020, pp. 174-177.
  10. A. Momeni, J. Han, P. Montuschi, and F. Lombardi, "Design and analysis of approximate compressors for multiplication," IEEE Transactions on Computers, vol. 64, no. 4, 2015, pp. 984-994. https://doi.org/10.1109/TC.2014.2308214
  11. Z. Yang, J. Han, and F. Lombardi, "Approximate compressors for error resilient multiplier design," In 2015 IEEE Int. Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), Oct. 2015, pp. 183-186.
  12. U. Kumar, S. Chatterjee, and S. Ahmed, "Low-Power Compressor-based Approximate Multipliers with Error Correcting Module," IEEE Embedded Systems Letters (Early Access), 2021, pp. 1-4.