DOI QR코드

DOI QR Code

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method

다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어

  • 황남웅 (한화시스템 미래정보통신연구소 지상전투체계팀) ;
  • 김병수 (경기대학교 대학원 전자공학과)
  • Received : 2021.10.25
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

본 논문에서는 쿼드로터의 모터 하나가 완전히 고장이 발생한 경우 쿼드로터의 위치 제어를 위한 능동 결함 허용 제어 방법을 제안한다. 소각의 가정 없이 라그랑지 방정식을 사용하여 쿼드로터의 동적 방정식을 구한다. 제안한 방법에서는 모터의 결함 검출을 위해 고장 검출 및 진단(FDD) 모듈과 고장 검출 및 분리(FDI) 모듈로 구성되는 고장 검출모듈을 설계한다. FDD 모듈에서는 구해진 동력학에 기반하여 쿼드로터의 상태를 관측하는 비선형 관측기를 설계한다. 관측된 쿼드로터의 상태들를 이용하여, 유수 신호를 설계하고 결함을 검출하기 위한 유수 신호의 적절한 문턱 값을 설정한다. 또한 설계된 추가 조건을 사용하여 결함 위치를 알아내기 위한 FDI 모듈을 설계한다. 모터의 결함을 검출한 후 쿼드로터가 원하는 경로로 비행하기 위해 다중 슬라이딩 표면 제어 기법에 기반한 결함 허용 제어기를 설계한다. 마지막으로, 모의실험을 통해 제안한 능동 결함 허용 제어 방법이 효용성을 검증한다.

Keywords

References

  1. A. R. Merheb, F. Bateman, and H. Noura, "Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory," Int. J. Appl. Math. Comput. Sci., vol. 25, no. 3, Sept. 2015, pp. 561-576. https://doi.org/10.1515/amcs-2015-0042
  2. T. Lombaerts, Automatic flight control systems-Latest Developments. Germany, 2012.
  3. A. R. Merheb, F. Bateman, and H. Noura, "Passive and active fault tolerant control of octorotor UAV using second order sliding mode control," IEEE Conf. Control Appl., Sydney, Australia, 2015, pp. 1907-1912.
  4. T. Li, Y. Zhang, and B. W. Gordon, "Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique," Proc. of Inst. Mech. Engineers Part I: J. Sys. Cotrol Engineering, Vol. 227, No. 1, 2012, pp. 12-23. https://doi.org/10.1177/0959651812455293
  5. M. W. Mueller and R. D. Andrea, "Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers," Proc. of IEEE Int. Conf. Robot. Auto., Hongkong, China. 2014, pp. 45-52.
  6. M. W. Mueller and R. D. Andrea, "Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles," Proc. of Int. J. Robot. Research, vol. 35, no. 8, Oct, 2015, pp. 873-889.
  7. S. Tashreef, L. Iftekhar, and S. A. Rahman, "Design of a crash-resistant PD-controlled quadcopter using coaxial propeller system," Proc. of Int. Conf. Unmanned Aircraft Sys., Washington D.C, USA, 2016, pp. 986-992.
  8. R. C. Gomes and G. A. P. The, "PID-based fail-safe strategy against the break of opposite motors in quadcopters," Proc. of Workshop on Research, Edu. Develop. Unmanned Aerial Sys., Cancon, Maxico, 2015, pp. 109-114.
  9. A. Chamseddine, D. Theilliol, Y. M. Zhang, C. John, and C. A. Rabbath, "Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle," Proc. of Int. J. Adapt. Control and Signal Process., vol. 29, no. 1, Nov. 2013, pp. 1-23.
  10. P. H. Zipfel, Modeling and simulation of aerospace vehicle dynamics. USA: Aiaa Education Series, 2007.
  11. L. R. G. Carrillo, A. E. D. Lopez, R. Lozano, and C. Pegard, Quad rotorcraft control: vision based hovering and navigation. Switzerland: Springer, 2012.
  12. T. Bresciani, "Modeling, identification and control of a quadrotor helicopter," Master's thesis, Lund University, 2008.
  13. R. W. Beard, "Quadrotor dynamics and control," Master's thesis, Brigham Young University, 2008.
  14. D. Mellinger, M. Shomin, and V. Kumar, "Control of quadrotors for robust perching and landing," Proc. of the Int. Powered Lift Conf., Philadelphia, USA, 2010, pp. 205-225.
  15. A. R. Merheb, H. Noura, and F. Bateman, "Active fault tolerant control of quadrotor UAV using sliding mode control," Proc. of Int. Conf. Unmanned Aircraft Sys., Orlando, USA, 2014, pp. 156-166.
  16. A. Freddi, "Model-based diagnosis and control of unmanned aerial vehicles: application to the quadrotor system," Ph. D's thesis, Universita Politecnica Delle Marche, 2012.
  17. Z. Lu, F. Lin, and H. Ying, "Multiple sliding surface control for systems in nonlinear block controllable form," Cybernetics and Sys.: An Int. J., vol. 36, no. 5, Sept, 2006, pp. 513-526. https://doi.org/10.1080/01969720590944285
  18. J. K. Hedrick and P. P. Yip, "Multiple sliding surface control: theory and application," J. Dynamic Sys. Measure. Control, vol. 122, no. 4, pp. 586-593, December 2000. https://doi.org/10.1115/1.1321268