DOI QR코드

DOI QR Code

Optimal Conditions for the Production of Gamma-aminobutyric Acid by Enterococcus casseliflavus PL05 Isolated from Oenanthe javanica

  • Received : 2021.12.24
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

In this study, a new lactic acid bacterium (LAB) that could produce gamma-aminobutyric acid (GABA) was isolated from Oenanthe javanica (water celery) and identified as an Enteroccoccus casseliflavus strain. Until recently, there have been many studies on the gamma-aminobutyric acid producing lactic acid bacterium, as well as on some lactic acid bacterium in Enteroococcs genus, but none on the species E. casseliflavus. Therefore, in the purpose of finding the optimal conditions for GABA production of E. casseliflavus PL05, the effects of several conditions including the type of mediums, growth temperatures, initial pH, growth time, L-mono sodium glutamate (MSG) concentration, and carbon source were tested. The study revealed that the PL05 strain grew better in the Brain Heart Infusion (BHI) medium than in the Man, Rogosa, and Sharpe (MRS) or Tryptic Soy Broth (TSB) medium. Also, similar results were obtained with GABA production conditions. As a result of analysis on the GABA production yield by concentration of MSG, a GABA substrate, the highest production was found at 7% of MSG concentration. However, since similar level of production was found at 5%, it is considered to be more efficient to use 5% MSG concentration. The analysis on the growth and GABA production yield by carbon sources showed the highest results when maltose was used. From the final test under the optimal conditions found, 140.06±0.71 mM of GABA was produced over 24 hours with the conversion rate of 78.95%. Lastly, from the sensitivity analysis on the 10 different antibiotics, including vancomycin, it was found that there were not confirmed cases of resistance.

본 연구에서는 국내산 돌미나리에서 GABA생성능이 있는 신규 유산균을 분리, 동정한 결과, Enteroccoccus casseliflavus로 확인되었다. 최근까지 Lactobacillus속과 같은 GABA 생성 유산균에 대한 보고는 많이 되고 있고, 일부 Enterococcs속 유산균도 보고되고 있으나 E. casseliflavus종에 대한 보고는 없었다. 따라서 본 연구에서는 E. casseliflavus PL05 균주에 대한 GABA 생성 최적 조건을 찾기 위하여 배지의 유형, 생육 온도, 초기 pH 조건, 배양 시간, MGS 농도 및 탄소원을 포함한 다양한 조건을 테스트하였다. PL05 균주는 MRS 혹은 TSB 배지보다 BHI 배지에서 생육이 잘 되었으며, 배지의 초기 pH는 7-9 조건에서 가장 생육이 왕성하였고, GABA 생성 조건 역시 유사한 결과로 확인되었다. GABA의 기질에 해당하는 MSG의 농도별 GABA 생성량을 조사한 결과, 7%에서 가장 높은 생성량을 나타내었으나 5%에서도 유사한 수준으로 확인되어 효율적인 측면에서 5%가 적합할 것으로 판단된다. 탄소원에 따른 생육 및 GABA 생성량은 말토오스를 사용하였을 때 가장 높은 것으로 확인되었고, 이러한 최적의 조건들로 최종 테스트를 진행한 결과, 24시간째 140.06±0.71 mM의 GABA가 생성되었고, 전환율은 78.95%로 확인되었다. 또한 반코마이신을 포함한 10개의 항생제에 대한 감수성을 조사한 결과 내성이 없는 것을 확인하였다.

Keywords

References

  1. Manyam, B.V., Katz, L., Hare, T.A., Kaniefski, K., Tremblay, R.D., Isoniazid-induced elevation of cerebrospinal fluid (CFS) GABA levels and effects on chorea in Huntington's disease. Ann Neurol., 10, 35-37 (1981). https://doi.org/10.1002/ana.410100107
  2. Ueno, H., Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B: Enzym., 10, 67-79 (2000). https://doi.org/10.1016/S1381-1177(00)00114-4
  3. Kang, T.J., Oh, S.H., Production and utilization of GABA. BioWave, 9, 1-18 (2007).
  4. Wu, J.Y., Matsuda, T., Roberts, E., Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem., 248, 3029-3034 (1973). https://doi.org/10.1016/S0021-9258(19)44004-0
  5. Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., Yamori, Y., Effect of γ-aminobutyric acidenriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr., 92, 411-417 (2004). https://doi.org/10.1079/BJN20041221
  6. Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., Yokogoshi, H., Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors, 26, 201-208 (2006). https://doi.org/10.1002/biof.5520260305
  7. Oh, S.H., Moon, Y.J., Soh, J.R., Cha, Y.S., Effect of water extract of germinated brown rice on adiposity and obesity indices in mice fed a high fat diet. J. Korean Soc. Food Sci. Nutr., 10, 251-256 (2005).
  8. Lee, K.W., Shim, J.M., Yao, Z., Kim, J.A., Kim, J.H., Properties of Kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol., 28, 534-541 (2018). https://doi.org/10.4014/jmb.1709.09011
  9. Leory, F., De Vuyst, L., Lactic acid bacteria as a functional starter cultures for the food fermentation industry. Trends Food Sci. Technol., 15, 67-78 (2004). https://doi.org/10.1016/j.tifs.2003.09.004
  10. Akbari, H. Shekrabi, S.P.H., Soltani, M., Mehrgan, M.S., Effects of potential probiotic Enterococcus casseliflavus (EC-001) on growth performance, immunity, and resistance to Aeromonas hydrophila Infection in common Carp (Cyprinus carpio). Probiotics Antimicrob. Proteins, 13, 1316-1325 (2021). https://doi.org/10.1007/s12602-021-09771-x
  11. Mundt, O.J., 1986. Enterococci. Vol. 2, Bergey's Manual of Systemic Bacteriology. In P.H.A. Sneath, N.S. Mair, M.E. Shape, and G.E. Holt (eds.), Williams and Wilkins, Baltimore, MD, USA, pp. 1063-1065.
  12. Siragusa, S., Angelis, M.D., Cagno, R.D., Rizzello, C.G., Coda, R., Gobbetti, M., Synthesis of γ -aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol., 73, 7283-7290 (2007). https://doi.org/10.1128/AEM.01064-07
  13. Lim, H.S., Cha, I.T., Roh, S.W., Shin, H.H., Seo, M.J., Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from Kimchi, a Korean fermented food. J. Microbiol. Biotechnol., 27, 450-459 (2017). https://doi.org/10.4014/jmb.1610.10008
  14. Kook, M.C., Seo, M.J., Cheigh, C.I., Pyun, Y.R., Cho, S.C., Park, H., Enhanced production of γ-Aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol., 20, 763-766. (2010). https://doi.org/10.4014/jmb.0911.11016
  15. Lee, K.W., Shim, J.M., Yao, Z., Kim, J.A., Kim, J.H., Properties of Kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol., 28, 534-541 (2018). https://doi.org/10.4014/jmb.1709.09011
  16. Lu, X., Chen, Z., Gu, Z., Han, Y., Isolation of γ-aminobutyric acid producing bacteria and optimization of fermentative medium. Biochem. Eng. J., 41, 48-52 (2008). https://doi.org/10.1016/j.bej.2008.03.005
  17. Lin, Q., Li, D., Qin, H., Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. Electron. J. Biotechnol., 27, 8-13 (2017). https://doi.org/10.1016/j.ejbt.2017.03.002
  18. Yang, H.Y., Xing, R., Hu, L., Liu, S., Li, P., Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb. Biotechnol., 9, 478-485 (2016). https://doi.org/10.1111/1751-7915.12301
  19. Divyashri, G., Prapulla, S.G., An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR3003 in batch fermentation. Ann. Microbiol., 65, 1109-1118 (2015). https://doi.org/10.1007/s13213-014-0957-1
  20. Dhakal, R., Bajpai, V.K., Baek, K.H., Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol., 43, 1230-1241 (2012). https://doi.org/10.1590/S1517-83822012000400001
  21. Lee, K.W., Shim, J.M., Yao, Z., Kim, J.A., Kim, H.J., Kim, J.H., Characterization of a glutamate decarboxylase (GAD) from Enterococcus avium M5 isolated from Jeotgal, a Korean fermented seafood. J. Microbiol. Biotechnol., 27, 1216-1222 (2017). https://doi.org/10.4014/jmb.1701.01058
  22. Davis, W.W., Stout, T.R., Disc plate method of microbiological antibiotic assay. Appl. Microbiol., 22, 659-665 (1971). https://doi.org/10.1128/aem.22.4.659-665.1971
  23. Li, H., Qiu, T., Huang, G., Cao, Y., Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact., 9, 85 (2010). https://doi.org/10.1186/1475-2859-9-85
  24. Kim, J.Y., Lee, M.Y., Ji, G.E., Lee, Y.S., Hwang, K.T., Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol., 130, 12-16 (2009). https://doi.org/10.1016/j.ijfoodmicro.2008.12.028
  25. Cui, Y., Miao, K., Niyaphorn, S., Qu, X., Production of gamma-aminobutyric acid from lactic acid bacteria: A Systematic Review. Int. J. Mol. Sci., 21, 995. (2020). https://doi.org/10.3390/ijms21030995
  26. Lim, H.S., Cha, I.T., Lee, H.J., Seo, M.J., Optimization of γ-aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Microbiol. Biotechnol. Lett., 44, 26-33. (2016). https://doi.org/10.4014/mbl.1512.12004
  27. Siragusa, S., Angelis, M.D., Cagno, R.D., Rizzello, C.G., Coda, R., Gobbetti, M., Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol., 73, 7283-7290 (2007). https://doi.org/10.1128/AEM.01064-07
  28. Yang, S.Y., Lu, F.X., Lu, Z.X., Bie, X.M., Jiao, Y., Sun, L.J., Yu, B., Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids, 34, 473-478 (2008). https://doi.org/10.1007/s00726-007-0544-x
  29. Villegas, J.M., Brown, L., de Giori, G.S., Herbt, E.M., Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL1942, isolated from quinoa sourdough. LWT-Food Sci. Technol., 67, 22-26 (2016). https://doi.org/10.1016/j.lwt.2015.11.027