DOI QR코드

DOI QR Code

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University) ;
  • Park, Seon Ha (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University) ;
  • Ha, Hyo Jeong (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University) ;
  • Lee, Sumin (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University) ;
  • Heo, Sungjun (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University) ;
  • Im, Sang Won (Department of Materials Science and Engineering, Seoul National University) ;
  • Nam, Ki Tae (Department of Materials Science and Engineering, Seoul National University) ;
  • Lim, Sung Yul (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
  • 투고 : 2021.09.07
  • 심사 : 2021.10.08
  • 발행 : 2022.02.28

초록

The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.

키워드

과제정보

This research was supported by a grant from the National Research Foundation of Korea (NRF) grants (2021R1A4A5032876 and 2021R1C1C1012503) funded by Ministry of Science and ICT (MSIT).

참고문헌

  1. A. Lim, M. K. Cho, S. Y. Lee, H. J. Kim, S. J. Yoo, Y. E. Sung, J. H. Jang and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273. https://doi.org/10.5229/JECST.2017.8.4.265
  2. T. Y. Kou, S. W. Wang and Y. Li, ACS Mater. Lett., 2021, 3(2), 224-234. https://doi.org/10.1021/acsmaterialslett.0c00536
  3. M. K. Cho, A. Lim, S. Y. Lee, H. J. Kim, S. J. Yoo, Y. E. Sung, H. S. Park and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3), 183-196. https://doi.org/10.5229/JECST.2017.8.3.183
  4. C. Y. Zhang, B. Liu, B. X. Yu, X. P. Lu, Y. Wei, T. Zhang, J. M. C. Mol and F. H. Wang, Surf. Coat. Technol., 2019, 359, 414-425. https://doi.org/10.1016/j.surfcoat.2018.12.091
  5. S. Y. Lim, S. Park, S. W. Im, H. Ha, H. Seo and K. T. Nam, ACS Catal., 2020, 10(1), 235-244. https://doi.org/10.1021/acscatal.9b03544
  6. S. W. Im, H. J. Ha, K. T. Nam and S. Y. Lim, ACS Appl. Energy Mater., 2021, 4(6), 5392-5396.
  7. H. M. Sun, Z. H. Yan, F. M. Liu, W. C. Xu, F. Y. Cheng and J. Chen, Adv. Mater., 2020, 32(3), 1806326. https://doi.org/10.1002/adma.201806326
  8. M. M. Jaksic, Int. J. Hydrogen Energy, 2001, 26(6), 559-578. https://doi.org/10.1016/S0360-3199(00)00120-8
  9. S. J. Shen, Z. P. Lin, K. Song, Z. P. Wang, L. G. Huang, L. H. Yan, F. Q. Meng, Q. H. Zhang, L. Gu and W. W. Zhong, Angew. Chem. Int. Ed., 2021, 60(22), 12360-12365. https://doi.org/10.1002/anie.202102961
  10. Z. L. Chen, H. L. Qing, R. R. Wang and R. B. Wu, Energy Environ. Sci., 2021, 14(5), 3160-3173. https://doi.org/10.1039/D1EE00052G
  11. J. Y. Qin, C. Xi, R. Zhang, T. Liu, P. C. Zou, D. Y. Wu, Q. J. Guo, J. Mao, H. L. Xin and J. Yang, ACS Catal., 2021, 11(8), 4486-4497. https://doi.org/10.1021/acscatal.0c04415
  12. L. S. Sanches, S. H. Domingues, C. E. B. Marino and L. H. Mascaro, Electrochem. Commun., 2004, 6(6), 543-548. https://doi.org/10.1016/j.elecom.2004.04.002
  13. T. Wang, R. M. Jin, X. Q. Wu, J. Zheng, X. G. Li and K. Ostrikov, J. Mater. Chem. A, 2018, 6(19), 9228-9235. https://doi.org/10.1039/C8TA01325J
  14. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Energy Environ. Sci., 2011, 4(9), 3573-3583. https://doi.org/10.1039/c1ee01488a
  15. C. G. Morales-Guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Gratzel and X. L. Hu, Angew. Chem. Int. Ed., 2015, 54(2), 664-667. https://doi.org/10.1002/anie.201410569
  16. G. X. Cao, Z. J. Chen, H. Yin, L. Y. Gan, M. J. Zang, N. Xu and P. Wang, J. Mater. Chem. A, 2019, 7(17), 10338-10345. https://doi.org/10.1039/c9ta00899c
  17. E. H. Eladgham, D. D. Rodene, R. Sarkar, I. U. Arachchige and R. B. Gupta, ACS Appl. Nano Mater., 2020, 3(8), 8199-8207. https://doi.org/10.1021/acsanm.0c01624
  18. Z. Z. Chang, L. J. Zhu, J. Zhao, P. W. Chen, D. Y. Chen and H. J. Gao, Int. J. Hydrogen Energy, 2021, 46(5), 3493-3503. https://doi.org/10.1016/j.ijhydene.2020.11.007
  19. K. Suemori, Y. Watanabe, N. Fukuda and S. Uemura, ACS Omega, 2020, 5(22), 12692-12697. https://doi.org/10.1021/acsomega.9b04222
  20. A. P. Grosvenor, M. C. Biesinger, R. S. Smart and N. S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779. https://doi.org/10.1016/j.susc.2006.01.041
  21. D. Zhou, P. P. Cheng, J. X. Luo, W. M. Xu, J. W. Li and D. S. Yuan, J. Mater. Sci., 2017, 52(24), 13909-13919. https://doi.org/10.1007/s10853-017-1467-x
  22. R. M. Wittman, R. L. Sacci and T. A. Zawodzinski, J. Power Sources, 2019, 438, 227034. https://doi.org/10.1016/j.jpowsour.2019.227034
  23. M. B. Stevens, C. D. M. Trang, L. J. Enman, J. Deng and S. W. Boettcher, J. Am. Chem. Soc., 2017, 139(33), 11361-11364. https://doi.org/10.1021/jacs.7b07117