Comparison Of Antibacterial Activity Of 10 Essential Oils And Oxacillin Against Staphylococcus Epidermidis

Ji Eun Jeong¹, Young Sam Yuk², Jae Kyung Kim³

¹Student, Department of Clinical Medical Science, Graduate School of Health and Welfare, Dankook University
²Professor, Department of Clinical Medical Science, Graduate School of Health and Welfare, Dankook University
³Professor, Department of Biomedical Laboratory Science, Dankook University College of Health Sciences

Abstract Although various studies have focused on the relationship between essential oils (EOs) and skin flora, there are only few comparative studies on the antibacterial properties of EOs and their efficacy against common microorganisms. In this study, we tested the antibacterial activity of 10 different EOs against Staphylococcus epidermidis (S. epidermidis) with oxacillin as control. Optical density was used to measure the activity of solutions containing the EOs and S. epidermidis at two different concentrations.

Three EOs (palmarosa, lemongrass, and Mellissa True) had higher antibacterial activity than oxacillin, but their concentrations had negligible effect on antibacterial activity.

Key Words : Staphylococcus Epidermidis, Essential Oils, Oxacillin, Alternative Medicine, Phytochemical, Antibiotics

1. Introduction

The skin serves as the primary barrier in protecting the body from external threats like chemical irritants and microscopic pathogens[1]. It receives tactile input from the external stimuli and plays a role in regulating body temperature. Skin is colonized by microorganisms with various characteristics, like Staphylococcal species (S. epidermidis and S. aureus), Pseudomonas aeruginosa, Escherichia coli, and Candida albicans [2,3]. Although skin flora is generally harmless, under specific stimuli, these microorganisms can break into the body and lead to infection[1]. Although S. epidermidis has a low chance of...
becoming pathogenic, immunocompromised individuals are at increased risk of developing infections secondary to *S. epidermidis* [4]. Because multiple disorders can lead to a compromised immune system, *S. epidermidis* has become an increasingly important target of study[5,6].

Essential oils (EOs) have natural antibacterial and antioxidant properties[7]. Among various EOs, lemongrass (LG) has antibacterial properties against *Propionibacterium acnes* and *S. epidermidis*, the former being a primary cause of acne [8,9]. Another EO with similar properties is Rosemary verbenone (RM), which has antifungal, antiviral, antibacterial, anti-inflammatory, and antioxidant properties[10,11]. RM has been used effectively in the clinic to treat atopic dermatitis [12]. Palmarosa (PR) is yet another EO with antibacterial activity specific against *P. acnes* [13]. PR also has antibacterial activity against *C. albicans, S. aureus*, and *E. coli* [14]. Oxacillin, an antibiotic similar to penicillin, is effective in treating select *S. epidermidis* infections[15,16]. However, no study has compared the antibacterial properties of oxacillin and EOs. In this study, antibacterial activity against *S. epidermidis* was compared between oxacillin and 10 different EOs.

2. Methods

EOs were provided by the Certification Academy for Holistic Aromatherapy, and 10 EOs were randomly selected for analyses. Table 1 shows the types of EOs in this study. Oxacillin (2 mg/ml) was purchased from Sigma–Aldrich (Steinheim, Germany). A Flexstation 3 Multi-Mode Microplate Reader (Molecular Devices, California, USA) was used along with its spectrophotometer absorption feature to read absorption of all samples at 600 nm wavelength. *S. epidermidis* (KCTC 14990) was purchased from the Korean Collection for Type Cultures (KCTC). *S. epidermidis* was cultured on a nutrient agar plate (MB-N1036, KisanBio, Seoul, Korea) by incubating for 18 h at 37°C. The cultured strains were calculated for their colony-forming units (CFU)/ml according to a 1 × 10⁶ volume ratio and the CLSI 0.5 McFarland standard, using nutrient broth (Difco, Claix, France). The standard concentration bacteria suspension (100 ml) was dispensed into a 96-well plate. EOs were added at concentrations of 1% and 0.5%. Oxacillin (2 mg/ml) was used as a control, and optical density (OD) measured at 600 nm wavelength was used as an endpoint. The experimental method is shown in Fig. 1 and Table 1. This process was repeated four times to increase the accuracy of the results. This study was conducted with the approval of the Ethics Committee of Dankook University (IRB File No. NON2021-002) and in accordance with the Declaration of Helsinki.

![Experimental method](image)

Fig. 1. Experimental method.

Table 1. Classification of essential oils according to extraction site

<table>
<thead>
<tr>
<th>Oils name</th>
<th>Botanical name</th>
<th>Origin</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cypress</td>
<td>Cupressus sempervirens</td>
<td>Austria</td>
<td>CP</td>
</tr>
<tr>
<td>Lemongrass</td>
<td>Cymbopogon schoenatus</td>
<td>Guatemala</td>
<td>LG</td>
</tr>
<tr>
<td>Manuka</td>
<td>Leptospermum scoparium</td>
<td>New Zealand</td>
<td>MK</td>
</tr>
<tr>
<td>Melissa True</td>
<td>Melissa officinalis</td>
<td>Italy</td>
<td>MS</td>
</tr>
<tr>
<td>Palmarosa</td>
<td>Cymbopogon martini</td>
<td>India</td>
<td>PR</td>
</tr>
<tr>
<td>Rosemary verbenone</td>
<td>Rosmarinus officinalis</td>
<td>France</td>
<td>RM</td>
</tr>
</tbody>
</table>

1% and 0.5% concentrations of essential oils and *S. epidermidis* were dispensed in a 96-well plate, incubated for 18 h, and their absorbance measured.
Comparison Of Antibacterial Activity Of 10 Essential Oils And Oxacillin Against Staphylococcus Epidermidis

Table 1. Classification of essential oils according to extraction site.

<table>
<thead>
<tr>
<th>Oils name</th>
<th>Botanical name</th>
<th>Origin</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea Tree</td>
<td>Melaleuca alternifolia</td>
<td>Australia</td>
<td>TT</td>
</tr>
<tr>
<td>Thyme white</td>
<td>Thymus vulgaris</td>
<td>Spain</td>
<td>TM</td>
</tr>
<tr>
<td>Orange Sweet</td>
<td>Citrus sinensis</td>
<td>Argentine</td>
<td>OR</td>
</tr>
<tr>
<td>Rosewood</td>
<td>Aniba rosaeodora</td>
<td>Brazil</td>
<td>RW</td>
</tr>
</tbody>
</table>

3. Results

More than 30% of the 10 EOs showed some level of antibacterial activity. Three EOs showed higher antibacterial activity than oxacillin, as shown in Table 2 and Fig. 2. LG, Melissa True (MS), and PR showed higher antibacterial activity than oxacillin. Orange sweet had lower antibacterial activity than oxacillin.

Table 2. Optical density (%) of essential oils at 600nm wavelength.

<table>
<thead>
<tr>
<th>Name</th>
<th>OD (0.5%)</th>
<th>OD (1.0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemongrass*</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>Melissa true*</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Palmarosa*</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Oxacillin (control)</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

* Higher antibacterial activity than oxacillin OD, optical density.

4. Discussion

Studies have shown that both RM and LG have excellent antibacterial activity against S. epidermidis[17,18], but in this study, PR showed the highest antibacterial activity among the tested compounds. PR and thyme white (TM) have previously shown high antibacterial activity against both E. coli and S. epidermidis strains[19]. In this study, PR showed the highest antimicrobial activity at both concentrations (0.5% and 1%). Furthermore, PR previously showed high antibacterial activity against gram-negative and positive bacteria[20]. Our results also showed high antibacterial activity of PR against S. epidermidis, a gram-positive bacterium.

LG exudes high antibacterial activity against S. epidermidis[21-24], and this was demonstrated in our study as well, with LG exhibiting high antibacterial activity against S. epidermidis. In previous studies, MS showed low antibacterial activity against several pathogenic strains[25]. However, one study reported that certain gram-negative pathogenic bacteria were highly sensitive to MS, including P. aeruginosa, E. coli, Salmonella enteritidis, Salmonella typhi, E. coli ATCC 25922, Shigella sonnei IPH-MR strain, and other Shigella strains[26]. In this study, MS showed higher antibacterial activity against S. epidermidis than oxacillin.
A previous study reported that oxacillin has high antimicrobial activity against *S. epidermidis* strain[27]. Here we found that PR, LG, and MS had higher antibacterial activity against *S. epidermidis* than oxacillin. Tea tree is also reported to have higher antibacterial activity than oxacillin against several pathogens[25], but this was not observed in our study. Previous studies also reported that cypress lacks antibacterial activity at a concentration of 10% against any strain[28].

EOs are reported to show a dose-dependent antibacterial activity, that is, their antibacterial activity increased with their concentrations[20]. In our study, we did not observe a difference in antibacterial activity EOs at different concentrations.

Further research should employ higher EO concentrations, different bacterial species, and comparative studies involving antibiotics and other EOs[29,30].

The authors declare that there are no conflicts of interest.

REFERENCES

Comparison Of Antibacterial Activity Of 10 Essential Oils And Oxacillin Against Staphylococcus Epidermidis

정 지 은 (Ji Eun Jeong) [정회원]

- 2020년 3월 ~ 현재 : 단국대학교 보건복지대학원 석사
- 관심분야: 에센셜오일, 피부
- E-Mail: wldms4650@naver.com

육 영 삼 (Young Sam Yuk) [정회원]

- 1994년 8월 : 단국대학교 일반대학원 미생물학(이학석사)
- 2016년 8월 : 단국대학교 보건대학원(보건학박사)
- 2018년 3월 ~ 현재 : 단국대학교 보건복지대학원 교수

- 관심분야: 에센셜오일, 피부, 항노화
- E-Mail: y60320@gmail.com

김 재 경 (Jae Kyung Kim) [정회원]

- 1993년 2월 : 단국대학교 대학원 (석사)
- 2008년 8월 : 단국대학교 대학원 (박사)
- 2015년 9월 ~ 현재 : 단국대학교 임상병리학과 교수

- 관심분야: 진단검사의학, 감염, 면역, 환경, 보건위생, 항노화
- E-Mail: nerowolf2@dankook.ac.kr