DOI QR코드

DOI QR Code

Comparison of Cs and Sr Ion Adsorption Capacities with Crystallinity of Zeolitic Materials Synthesized from Coal Fly Ash under Low-Alkaline Conditions

석탄 비산재로부터 저알칼리 조건에서 합성된 제올라이트 물질의 결정화도에 따른 Cs 및 Sr 이온의 흡착 용량 비교

  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan)
  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Received : 2022.01.19
  • Accepted : 2022.02.10
  • Published : 2022.02.28

Abstract

Zeolitic material, Z-Y3, was synthesized from coal fly ash (CFA) under low-alkaline conditions (NaOH/CFA ratio = 0.3 and NaOH solution concentrations of 0.0, 0.5, and 1.0 M) using a fusion/hydrothermal method. The adsorption capacities of the fabricated Z-Y3 samples for Cs and Sr ions and the desorption capacity of Na ions were evaluated. The XRD patterns of the Z-Y3 sample fabricated using a 1.0 M NaOH solution (Z-Y3 (1.0 M)) indicated the successful synthesis of a zeolitic material, because the diffraction peaks of Z-Y3 coincided with those of the Na-A zeolite in the 2θ range of 7.18-34.18. Moreover, the SEM images revealed that morphology of the Z-Y3 (1.0 M) sample, which presented zeolitic materials characteristics, consisted of sharp-edged cubes. The adsorption isotherms of Cs and Sr ions on all the fabricated Z-Y3 samples were described using the Langmuir model, and the maximum adsorption capacities of Cs and Sr were calculated to be 0.14-0.94 mmol/g and 0.19-0.78 mmol/g, respectively. The desorption of Na ions from the Cs and Sr ions adsorbed Z-Y3 samples followed the Langmuir desorption model. The maximum desorption capacities of Na ions from the Cs and Sr ions adsorbed Z-Y3 (1.0 M) samples were 1.28 and 1.49 mmol/g, respectively.

Keywords

Acknowledgement

본 논문은 2021년도 부산가톨릭대학교 교내학술연구비 및 2017년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(2017R1D1A1B03030350) 지원에 의하여 수행되었습니다.

References

  1. Carlos, A. R., Williams, C. D., Clive, L. R., 2009, A Comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel, 88(8), 1403-1416. https://doi.org/10.1016/j.fuel.2009.02.012
  2. Choi, J. H., Lee, C. H., 2019, Adsorption and desorption characteristics of Sr, Cs, and Na ions with Na-A zeolite synthesized from coal fly ash in low-alkali condition, J. Environ. Sci. Int., 28(6), 561-570. https://doi.org/10.5322/JESI.2019.28.6.561
  3. El-Kamash, A. M., 2008, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151(2-3), 432-445. https://doi.org/10.1016/j.jhazmat.2007.06.009
  4. Erten-Kaya, Y., Cakicioglu-Ozkan, F., 2012, Effect of ultrasound on the kinetics of cation exchange in NaX zeolite, Ultrason. Sonochem., 19(3), 701-706. https://doi.org/10.1016/j.ultsonch.2011.10.010
  5. Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41(1), 7-14. https://doi.org/10.14407/jrpr.2016.41.1.007
  6. KOSIS (Korean statistical information service), 2020, https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1339.
  7. Lee, C. H., 2019, Zeolitification characteristics of coal fly ash by amount of Na2CO3 using the fusion/hydrothermal method, J. Environ. Sci. Int., 28(6), 553-559. https://doi.org/10.5322/JESI.2019.28.6.553
  8. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26(3), 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  9. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption charateristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  10. Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash, Fuel, 84(18), 2289-2294. https://doi.org/10.1016/j.fuel.2005.05.003
  11. Munthali, M. W., Johan, E., Aono, H., Matsue, N., 2015, Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination, J. Asian Cera. Soc., 3(3), 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  12. Murayama, N., Yamamoto, H., Shibata, J., 2002, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process, 64(1), 1-17. https://doi.org/10.1016/S0301-7516(01)00046-1
  13. Park, J. W., Ahn, K. H., Lee, W. K., Lee, C. H., 2019, Crystallization properties of zeolite A synthesized from coal fly ash using a fusion/hydrothermal method, Mol. Cryst. Liq. Cryst., 687(1), 89-96. https://doi.org/10.1080/15421406.2019.1651057
  14. Periasamy, K., Namasivayam, C., 1994, Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: adsorption rates and equilibrium studies, Ind. Eng. Chem. Res., 33(2), 317-320. https://doi.org/10.1021/ie00026a022
  15. Rahman, R. O. A., Ibrahim, H. A. S., Hanafy, M., Abdel-Monem, N. M., 2010, Assessment of synthetic zeolite Na A X as sorbing barrier for strontium in a radioactive disposal facility, Chem. Eng. J., 157(1), 100-112. https://doi.org/10.1016/j.cej.2009.10.057
  16. Rayalu, S. S., Udhoji, J. S., Munshi, K. N., Hasan, M. Z., 2001, Highly crystalline zeolite-a from flyash of bituminous and lignite coal combustion, J. Hazard. Mater., 88(1), 107-201. https://doi.org/10.1016/S0304-3894(01)00296-5
  17. Roy, K., Pal, D. K., Basua, S., Nayak, D., Lahiri, S., 2002, Synthesis of a new ion exchanger, zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels, Appl. Radiat. Isot., 57(4), 471-474. https://doi.org/10.1016/S0969-8043(02)00136-7
  18. Singh, B. K., Tomar, R., Tomar, R., Tomar, S. S., 2011, Sorption of homologues of radionuclides by synthetic ion exchanger, Microporous Mesoporous Mater., 142(2-3), 629-640. https://doi.org/10.1016/j.micromeso.2011.01.006
  19. Smiciklas, I., Dimovic, S., Plecas, I., 2007, Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite, Appl. Clay Sci., 35(1-2), 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  20. Tanaka, H., Sakai, Y., Hino, R., 2002, Formation of Na-A and X zeolites from waste solutions in conversion of coal fly ash to zeolites, Mater. Res. Bull., 37(11), 1873-1884. https://doi.org/10.1016/S0025-5408(02)00861-9
  21. Wang, C. F., Li, J. S., Wang, L. J., Sun, X. Y., 2008, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155(1-2), 58-64. https://doi.org/10.1016/j.jhazmat.2007.11.028
  22. Walek, T. T., Saito, F., Zhang, Q., 2008, The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash, Fuel, 87(15-16), 3194-3199. https://doi.org/10.1016/j.fuel.2008.06.006
  23. Ye, Y., Zeng, X., Qian, W., Wang, M., 2008, Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extacts from fused coal fly ash, Fuel, 87(10-11), 1880-1886. https://doi.org/10.1016/j.fuel.2007.12.002
  24. Zhao, Y., Shao, Z., Chen, C., Hu, J., Chen, H., 2014, Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite, Applied Clay Sci., 87, 1-6. https://doi.org/10.1016/j.clay.2013.11.021
  25. Zhang, R., Liu, S., 2017, Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption, Int. J. Coal Geol., 171, 49-60. https://doi.org/10.1016/j.coal.2016.12.007
  26. Zyrkowski, M., Neto, R. C., Santos, L. F., Witkowski, K., 2016, Characterization of fly-ash cenospheres from coal-fired power plant unit, Fuel, 174, 49-53. https://doi.org/10.1016/j.fuel.2016.01.061