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FERMATEAN FUZZY TOPOLOGICAL SPACES

HARIWAN Z. IBRAHIM

Abstract. The purpose of this paper is to introduce the notion of Fer-
matean fuzzy topological space by motivating from the notion of intuition-
istic fuzzy topological space, and define Fermatean fuzzy continuity of a
function defined between Fermatean fuzzy topological spaces. For this pur-
pose, we define the notions of image and the pre-image of a Fermatean fuzzy
subset with respect to a function and we investigate some basic properties
of these notions. We also construct the coarsest Fermatean fuzzy topology
on a non-empty set X which makes a given function f from X into Y a Fer-
matean fuzzy continuous where Y is a Fermatean fuzzy topological space.
Finally, we introduce the concept of Fermatean fuzzy points and study
some types of separation axioms in Fermatean fuzzy topological space.
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1. Introduction

Fuzzy sets were introduced by L.A. Zadeh [9] in 1965. The fuzzy set concept
was the basis of mathematical testing of the fuzzy concept that exists in our real
world and the formation of new branches in mathematics. The fuzzy set concept
corresponding to unexplained physical situations gives useful applications on
many topics such as statistics, data processing and linguistics. A lot of research
has been done on this subject since 1965. In 1968, C.L. Chang [4] defined the
concept of fuzzy topological space and generalized some basic notions of topology
such as open set, closed set, continuity and compactness to fuzzy topological
spaces. The idea of intuitionistic fuzzy set was first published by K. Atanassov
[1] and many works by the same author and his colleagues appeared in the
literature [2, 3]. D. Coker [5] subsequently initiated a study of intuitionistic
fuzzy topological spaces. Later, R.R. Yager [8] launched a nonstandard fuzzy
set referred to as Pythagorean fuzzy set. Recently, M. Olgun, M. Ünver and S.
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Yardımc [6] defined a Pythagorean fuzzy topological spaces. Fermatean fuzzy
sets proposed by T. Senapati and R.R. Yager in 2020 [7], can handle uncertain
information more easily in the process of decision making. They defined basic
operations over the Fermatean fuzzy sets. The aim of this paper is to present
the concept of Fermatean fuzzy topological space and study the continuity of
a function defined among Fermatean fuzzy topological spaces. In the future
works, categorical properties of Fermatean fuzzy topological spaces, applications
of Fermatean fuzzy topological spaces, Fermatean fuzzy nano topological spaces
and Fermatean fuzzy soft topological spaces may be studied.

2. Fermatean fuzzy sets

Definition 2.1. [2] The intuitionistic fuzzy sets are defined on a non-empty set
X as objects having the form I = {⟨x, αI(x), βI(x)⟩ : x ∈ X}, where αI(x) :
X → [0, 1] and βI(x) : X → [0, 1] denote the degree of membership and the
degree of non-membership of each element x ∈ X to the set I, respectively, and
0 ≤ αI(x) + βI(x) ≤ 1, for all x ∈ X.

Definition 2.2. [8] The Pythagorean fuzzy sets are defined on a non-empty
set X as objects having the form P = {⟨x, αP (x), βP (x)⟩ : x ∈ X}, where
αP (x) : X → [0, 1] and βP (x) : X → [0, 1] denote the degree of membership and
the degree of non-membership of each element x ∈ X to the set P , respectively,
and 0 ≤ (αP (x))

2 + (βP (x))
2 ≤ 1, for all x ∈ X.

Definition 2.3. [7] Let X be a universe of discourse. A Fermatean fuzzy set
(FFS) F in X is an object having the form F = {⟨x, αF (x), βF (x)⟩ : x ∈ X},
where αF (x) : X → [0, 1] and βF (x) : X → [0, 1], including the condition
0 ≤ (αF (x))

3 + (βF (x))
3 ≤ 1, for all x ∈ X. The numbers αF (x) and βF (x) de-

note, respectively, the degree of membership and the degree of non-membership
of the element x in the set F .
For any FFS F and x ∈ X, πF (x) = 3

√
1− (αF (x))3 − (βF (x))3 is identified

as the degree of indeterminacy of x to F . In the interest of simplicity, we shall
mention the symbol F = (αF , βF ) for the FFS F = {⟨x, αF (x), βF (x)⟩ : x ∈ X}.

Definition 2.4. [7] Let F = (αF , βF ), F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be
three Fermatean fuzzy sets (FFSs), then their operations are defined as follows:

(1) F1 ∩ F2 = (min{αF1
, αF2

},max{βF1
, βF2

}).
(2) F1 ∪ F2 = (max{αF1

, αF2
},min{βF1

, βF2
}).

(3) F c = (βF , αF ).

We say F1 is a subset of F2 or F2 contains F1 and we write F1 ⊂ F2 or F2 ⊃ F1

if αF1 ≤ αF2 and βF1 ≥ βF2 .

Remark 2.1. If αF1
= αF2

and βF1
= βF2

, then F1 = F2.
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3. Fermatean fuzzy topological space

For understanding the Fermatean fuzzy set better, we give an instance to
illuminate the understandability of the Fermatean fuzzy set. The point when
someone needs will plan as much craving for the level for an alternative si on a
criterion Cj , he might provide for the degree on which that alternative si fulfils
those criteria Cj likewise 0.85, what is more correspondingly the elective si
dissatisfies the criterion Cj similarly as 0.65. We can definitely get 0.85+0.65 =
1.5 > 1, and, therefore, it does not follow the condition of intuitionistic fuzzy
sets. Also, we can get (0.85)2 + (0.65)2 = 0.7225 + 0.4225 = 1.145 > 1, which
does not obey the constraint condition of Pythagorean fuzzy set. However, we
can get (0.85)3 + (0.65)3 = 0.614125 + 0.274625 = 0.88875 ≤ 1, which is good
enough to apply the Fermatean fuzzy set to control it [7].

Note here that, if the union and the intersection are infinite, then we use
supremum ”sup” and infimum ”inf” instead of maximum ”max” and minimum
”min”, respectively. Throughout this paper, we use the notation 1X for the
Fermatean fuzzy subset (1, 0) and we use the notation 0X for the Fermatean fuzzy
subset (0, 1), that is, α1X = 1, β1X = 0 , α0X = 0 and β0X = 1. A Fermatean
fuzzy subset F of a non-empty set X is a pair (αF , βF ) of a membership function
αF (x) : X → [0, 1] and a non-membership function βF (x) : X → [0, 1] with
(αF (x))

3 + (βF (x))
3 = (γF (x))

3 for any x ∈ X where γF (x) : X → [0, 1] is a
function which is called the strength of commitment at point x.

Definition 3.1. Let X be a non-empty set and τ be a family of Fermatean
fuzzy subsets of X. If

(1) 1X , 0X ∈ τ ,
(2) for any F1, F2 ∈ τ , we have F1 ∩ F2 ∈ τ ,
(3) for any {Fi}i∈I ⊂ τ , we have

∪
i∈I Fi ∈ τ where I is an arbitrary index

set then τ is called a Fermatean fuzzy topology on X.

The pair (X, τ) is said to be a Fermatean fuzzy topological space. Each member
of τ is called an open Fermatean fuzzy subset. The complement of an open
Fermatean fuzzy subset is called a closed Fermatean fuzzy subset.

Following is an example of a Fermatean fuzzy topological space.

Example 3.2. Let X = {c1, c2}. Consider the following family of Fermatean
fuzzy subsets τ = {1X , 0X , F1, F2, F3, F4, F5} where

F1 = {⟨c1, αF1
(c1) = 0.4, βF1

(c1) = 0.6⟩ , ⟨c2, αF1
(c2) = 0.1, βF1

(c2) = 0.3⟩},

F2 = {⟨c1, αF2(c1) = 0.5, βF2(c1) = 0.4⟩ , ⟨c2, αF2(c2) = 0.2, βF2(c2) = 0.8⟩},

F3 = {⟨c1, αF3
(c1) = 0.3, βF3

(c1) = 0.7⟩ , ⟨c2, αF3
(c2) = 0, βF3

(c2) = 0.85⟩},
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F4 = {⟨c1, αF4
(c1) = 0.5, βF4

(c1) = 0.4⟩ , ⟨c2, αF4
(c2) = 0.2, βF4

(c2) = 0.3⟩},
and

F5 = {⟨c1, αF5(c1) = 0.4, βF5(c1) = 0.6⟩ , ⟨c2, αF5(c2) = 0.1, βF5(c2) = 0.8⟩}.
Observe that (X, τ) is a Fermatean fuzzy topological space.

Remark 3.1. Since every fuzzy set F on a non-empty set X is obviously a
Fermatean fuzzy set having the form F = {⟨x, αF (x), 1− αF (x)⟩ : x ∈ X}, so
any fuzzy topological space (X, τ1) in the sense of Chang is obviously a Fer-
matean fuzzy topological space in the form τ = {F : αF ∈ τ1} whenever we
identify a fuzzy set in X whose membership function is αF with its counter part
F = {⟨x, αF (x), 1− αF (x)⟩ : x ∈ X} as in the following example.

Example 3.3. Let X = {c}. Consider the following family of fuzzy subsets
τ = {1X , 0X , F1, F2} where

1X = {⟨c, α1X (c) = 1, 1− α1X (c) = β1X (c) = 0⟩},

0X = {⟨c, α0X (c) = 0, 1− α0X (c) = β0X (c) = 1⟩},

F1 = {⟨c, αF1
(c) = 0.7, 1− αF1

(c) = βF1
(c) = 0.3⟩} and

F2 = {⟨c, αF2
(c) = 0.2, 1− αF2

(c) = βF2
(c) = 0.8⟩}.

Observe that (X, τ) is a fuzzy topological space and hence it is a Fermatean
fuzzy topological space.

Remark 3.2. As any intuitionistic fuzzy subset or Pythagorean fuzzy subset
of a set can be considered as a Fermatean fuzzy subset, we observe that any
intuitionistic fuzzy topological space or Pythagorean fuzzy topological space is a
Fermatean fuzzy topological space as well. On the other hand, it is obvious that a
Fermatean fuzzy topological space needs not to be a intuitionistic fuzzy topolog-
ical space and Pythagorean fuzzy topological space. Even an open Fermatean
fuzzy subset maybe neither an intuitionistic fuzzy subset nor a Pythagorean
fuzzy (see Example 3.4).

Example 3.4. Let X = {c1, c2}. Consider the following family of Fermatean
fuzzy subsets τ = {1X , 0X , F1, F2} where
F1 = {⟨c1, αF1

(c1) = 0.4, βF1
(c1) = 0.6⟩ , ⟨c2, αF1

(c2) = 0.1, βF1
(c2) = 0.3⟩}

and
F2 = {⟨c1, αF2

(c1) = 0.9, βF2
(c1) = 0.6⟩ , ⟨c2, αF2

(c2) = 0.2, βF2
(c2) = 0.3⟩}.

Observe that (X, τ) is a Fermatean fuzzy topological space but (X, τ) is neither
intuitionistic fuzzy topological space nor Pythagorean fuzzy topological space.

Remark 3.3. The family {1X , 0X} is called the indiscreet Fermatean fuzzy
topological space and the topology that contains all Fermatean fuzzy subsets
is called the discrete Fermatean fuzzy topological space. Besides, a Fermatean
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fuzzy topology τ1 on a set is said to be coarser than a Fermatean fuzzy topology
τ2 on the same set if τ1 ⊂ τ2.

Definition 3.5. Let (X, τ) be a Fermatean fuzzy topological space and F =
{⟨x, αF (x), βF (x)⟩ : x ∈ X} be Fermatean fuzzy set in X. Then, the Fermatean
fuzzy interior and Fermatean fuzzy closure of F are defined by

(1) cl(F ) =
∩
{H : H is closed Fermatean fuzzy set in X and F ⊂ H}.

(2) int(F ) =
∪
{G : G is open Fermatean fuzzy set in X and G ⊂ F}.

Remark 3.4. Let (X, τ) be a Fermatean fuzzy topological space and F be any
Fermatean fuzzy set in X. Then,

(1) int(F ) is an open Fermatean fuzzy set.
(2) cl(F ) is a closed Fermatean fuzzy set.
(3) int(1X) = 1X and int(0X) = 0X .
(4) cl(1X) = 1X and cl(0X) = 0X .

Example 3.6. Consider the Fermatean fuzzy topological space (X, τ) in Ex-
ample 3.2. If F = {⟨c1, 0.62, 0.82⟩ , ⟨c2, 0.73, 0.69⟩}, then
int(F ) = 0X and cl(F ) = 1X ∩ F c3 = F c3 = {⟨c1, 0.7, 0.3⟩ , ⟨c2, 0.85, 0⟩}.

Theorem 3.7. Let (X, τ) be a Fermatean fuzzy topological space and F1, F2

be Fermatean fuzzy sets in X. Then, the following properties hold:
(1) int(F1) ⊂ F1 and F1 ⊂ cl(F1).
(2) If F1 ⊂ F2, then int(F1) ⊂ int(F2) and cl(F1) ⊂ cl(F2).
(3) F1 is open Fermatean fuzzy if and only if F1 = int(F1).
(4) F1 is closed Fermatean fuzzy if and only if F1 = cl(F1).
(5) int(F1) ∪ int(F2) ⊂ int(F1 ∪ F2).
(6) cl(F1 ∩ F2) ⊂ cl(F1) ∩ cl(F2).
(7) int(F1 ∩ F2) = int(F1) ∩ int(F2).
(8) cl(F1) ∪ cl(F2) = cl(F1 ∪ F2).

Proof. (1) and (2) are obvious. (3) and (4) follow from (1) and Definition 3.5.
(7) From int(F1 ∩ F2) ⊂ int(F1) and int(F1 ∩ F2) ⊂ int(F2) we obtain int(F1 ∩
F2) ⊂ int(F1) ∩ int(F2). On the other hand, from the facts int(F1) ⊂ F1 and
int(F2) ⊂ F2 we have int(F1)∩int(F2) ⊂ F1∩F2 and int(F1)∩int(F2) ∈ τ we see
that int(F1)∩int(F2) ⊂ int(F1∩F2), and hence int(F1∩F2) = int(F1)∩int(F2).
(8) Can be easily deduced from (7).

�

Theorem 3.8. Let (X, τ) be a Fermatean fuzzy topological space and F be
Fermatean fuzzy set in X. Then, the following properties hold:

(1) cl(F c) = int(F )c.
(2) int(F c) = cl(F )c.
(3) cl(F c)c = int(F ).
(4) int(F c)c = cl(F ).
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Proof. We only prove (1), the other parts can be proved similarly.
Let F = {⟨x, αF (x), βF (x)⟩ : x ∈ X} and suppose that the family of open Fer-
matean fuzzy sets contained in F are indexed by the family {⟨x, αUi

(x), βUi
(x)⟩ :

i ∈ J}. Then, int(F ) = {⟨x,
∨
αUi(x),

∧
βUi(x)⟩} and hence

int(F )c = {⟨x,
∧
βUi(x),

∨
αUi(x)⟩}. Since F c = {⟨x, βF (x), αF (x)⟩} and αUi ≤

αF , βUi
≥ βF for each i ∈ J , so we obtain that {⟨x, βUi

(x), αUi
(x)⟩ : i ∈ J}

is the family of closed Fermatean fuzzy sets containing F c, that is, cl(F c) =
{⟨x,

∧
βUi

(x),
∨
αUi

(x)⟩}. Thus, cl(F c) = int(F )c. �

Definition 3.9. Let X and Y be two non-empty sets and f : X → Y be a
function. Let A and B be Fermatean fuzzy subsets of X and Y , respectively.
Then, the membership and non-membership functions of image of A with respect
to f that is denoted by f [A] are defined by

αf [A](y) :=

{
supz∈f−1(y)αA(z) if f−1(y) ̸= ϕ
0 otherwise,

and
βf [A](y) :=

{
infz∈f−1(y)βA(z) if f−1(y) ̸= ϕ
1 otherwise,

respectively. The membership and non-membership functions of pre-image of B
with respect to f that is denoted by f−1[B] are defined by
αf−1[B](x) := αB(f(x)), and βf−1[B](x) := βB(f(x)), respectively.

Remark 3.5. Note that f [A] and f−1[B] are Fermatean fuzzy subsets. In fact,
since αA and βA are non-negative functions, then one can obtain,
(αf [A](y))

3 + (βf [A](y))
3

= (supz∈f−1(y)αA(z))
3 + (infz∈f−1(y)βA(z))

3

= supz∈f−1(y)(αA(z))
3 + infz∈f−1(y)(βA(z))

3

= supz∈f−1(y)((γA(z))
3 − (βA(z))

3) + infz∈f−1(y)(βA(z))
3

≤ supz∈f−1(y)(1− (βA(z))
3) + infz∈f−1(y)(βA(z))

3 = 1,

whenever f−1(y) is non-empty. On the other hand if f−1(y) = ϕ, then we have
(αf [A](y))

3 + (βf [A](y))
3 = 1.

The proof is trivial for f−1[B].

Theorem 3.10. Let X and Y be two non-empty sets and let f : X → Y be a
function. Then, we have

(1) f−1[Bc] = f−1[B]c for any Fermatean fuzzy subset B of Y .
(2) f [A]c ⊂ f [Ac] for any Fermatean fuzzy subset A of X.
(3) if B1 ⊂ B2, then f−1[B1] ⊂ f−1[B2] where B1 and B2 are Fermatean

fuzzy subsets of Y .
(4) if A1 ⊂ A2, then f [A1] ⊂ f [A2] where A1 and A2 are Fermatean fuzzy

subsets of X.
(5) f [f−1[B]] ⊂ B for any Fermatean fuzzy subset B of Y .
(6) A ⊂ f−1[f [A]] for any Fermatean fuzzy subset A of X.
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Proof. (1) For any x ∈ X and for any Fermatean fuzzy subset B of Y we
get from the definition of the complement that
αf−1[Bc](x) = αBc(f(x))
= βB(f(x))
= βf−1[B](x)
= αf−1[B]c(x).
Similarly one can have βf−1[Bc](x) = βf−1[B]c(x). Therefore, we have
f−1[Bc] = f−1[B]c.

(2) For any y ∈ Y such that f(y) ̸= ϕ and for any Fermatean fuzzy subset
A of X, we can write (γf [A](y))

3 = (αf [A](y))
3 + (βf [A](y))

3

= supz∈f−1(y)(αA(z))
3 + infz∈f−1(y)(βA(z))

3

= supz∈f−1(y)((γA(z))
3 − (βA(z))

3) + infz∈f−1(y)(βA(z))
3

≤ supz∈f−1(y)((γA(z))
3)− infz∈f−1(y)(βA(z))

3 + infz∈f−1(y)(βA(z))
3

= supz∈f−1(y)((γA(z))
3) ———–(*)

Now from (*), we have αf [Ac](y) = supz∈f−1(y)αAc(z)
= supz∈f−1(y)βA(z)

= supz∈f−1(y)
3
√

(γA(z))3 − (αA(z))3

≥ 3

√
supz∈f−1(y)(γA(z))3 − supz∈f−1(y)(αA(z))3

≥ 3
√
(γf [A](y))3 − (αf [A](y))3

= βf [A](y)
= αf [A]c(y).
The proof is trivial for each y ∈ Y such that f(y) = ϕ. On the other
hand, we have βf [Ac](y) ≤ βf [A]c(y) using the same idea. Hence, we
obtain f [A]c ⊂ f [Ac].

(3) Assume that B1 ⊂ B2. Then, we have for any x ∈ X that
αf−1[B1](x) = αB1(f(x)) ≤ αB2(f(x)) = αf−1[B2](x).
Therefore, one can get αf−1[B1](x) ≤ αf−1[B2](x). Similarly, it is not
difficult to show that βf−1[B1](x) ≥ βf−1[B2](x).

(4) Assume that A1 ⊂ A2 and y ∈ Y . If f(y) = ϕ, then the proof is trivial.
Assume that f(y) ̸= ϕ. Then, we have
αf [A1](y) = supz∈f−1(y)αA1(z)
≤ supz∈f−1(y)αA2

(z)
= αf [A2](y).
Thus, αf [A1] ≤ αf [A2] follows. Similarly, we have βf [A1] ≥ βf [A2].

(5) For any y ∈ Y such that f(y) ̸= ϕ, we can write
αf [f−1[B]](y) = supz∈f−1(y)αf−1[B](z)
= supz∈f−1(y)αB(f(z))
≤ αB(y).
On the other hand if f(y) = ϕ, then we have αf [f−1[B]](y) = 0 ≤ αB(y).
Similarly, we have βf [f−1[B]](y) = 0 ≥ βB(y).

(6) For any x ∈ X, we have
αf−1[f [A]](x) = αf [A](f(x))
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= supz∈f−1(f(x))αA(z)
≥ αA(x).
Similarly, we have βf−1[f [A]] ≤ βA.

�
The proof of the following result is easy and hence it is omitted.

Theorem 3.11. Let X and Y be two non-empty sets and f : X → Y be a
function. Then, the following statements are true:

(1) f [∪i∈IAi] = ∪i∈If [Ai] for any Fermatean fuzzy subset Ai of X.
(2) f−1[∪i∈IBi] = ∪i∈If−1[Bi] for any Fermatean fuzzy subset Bi of Y .
(3) f [A1 ∩A2] ⊂ f [A1]∩ f [A2] for any two Fermatean fuzzy subsets A1 and

A2 of X.
(4) f−1[∩i∈IBi] = ∩i∈If−1(Bi) for any Fermatean fuzzy subset Bi of Y .

Definition 3.12. Let A and U be two Fermatean fuzzy subsets in a Fermatean
fuzzy topological space. Then, U is said to be a neighbourhood of A if there
exists an open Fermatean fuzzy subset E such that A ⊂ E ⊂ U .
Theorem 3.13. A Fermatean fuzzy subset A is open in a Fermatean fuzzy
topological space if and only if it contains a neighbourhood of its each subset.
Proof. The proof is easy. �
Definition 3.14. Let (X, τ1) and (Y, τ2) be two Fermatean fuzzy topological
spaces and f : X → Y be a function. Then, f is said to be Fermatean fuzzy
continuous if for any Fermatean fuzzy subset A of X and for any neighbourhood
V of f [A] there exists a neighbourhood U of A such that f [U ] ⊂ V .
Theorem 3.15. Let (X, τ1) and (Y, τ2) be two Fermatean fuzzy topological
spaces and f : X → Y be a function. Then, the following statements are
equivalent:

(1) f is Fermatean fuzzy continuous.
(2) For any Fermatean fuzzy subset A of X and for any neighbourhood V

of f [A], there exists a neighbourhood U of A such that for any B ⊂ U
we have f [B] ⊂ V .

(3) For any Fermatean fuzzy subset A of X and for any neighbourhood V
of f [A], there exists a neighbourhood U of A such that U ⊂ f−1[V ].

(4) For any Fermatean fuzzy subset A of X and for any neighbourhood V
of f [A], f−1[V ] is a neighbourhood of A.

Proof. (1) ⇒ (2): Assume that f is Fermatean fuzzy continuous. Let A be a
Fermatean fuzzy subset of X and V be a neighbourhood of f [A]. Then, there
exists a neighbourhood U of A such that f [U ] ⊂ V . Now, if B ⊂ U , then we get
f [B] ⊂ f [U ] ⊂ V .
(2) ⇒ (3): Let A be a Fermatean fuzzy set of X and V be a neighbourhood of
f [A]. From (2), there exists a neighbourhood U of A such that for any B ⊂ U
we have f [B] ⊂ V . Then, we can write B ⊂ f−1[f [B]] ⊂ f−1[V ]. As B is an
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arbitrary subset of U , we have U ⊂ f−1[V ].
(3) ⇒ (4): Let A be a Fermatean fuzzy subset of X and V be a neighbourhood of
f [A]. Then from (3), there exists a neighbourhood U of A such that U ⊂ f−1[V ].
Since U is a neighbourhood of A there exists an open Fermatean fuzzy subset
K of X such that A ⊂ K ⊂ U . On the other hand as U ⊂ f−1[V ], one can get
A ⊂ K ⊂ f−1[V ] which implies f−1[V ] is a neighbourhood of A.
(4) ⇒ (1): Let A be a Fermatean fuzzy subset of X and V be a neighbourhood of
f [A]. From the hypothesis, we have f−1[V ] is a neighbourhood of A. Therefore,
there exists an open Fermatean fuzzy subset K of X such that A ⊂ K ⊂
f−1[V ] which implies f [K] ⊂ f [f−1[V ]] ⊂ V . Moreover, as K is open it is
a neighbourhood of A. Hence, f is Fermatean fuzzy continuous.

�

Theorem 3.16. Let (X, τ1) and (Y, τ2) be two Fermatean fuzzy topological
spaces. A function f : X → Y is Fermatean fuzzy continuous if and only if for
each open Fermatean fuzzy subset B of Y we have f−1[B] is an open Fermatean
fuzzy subset of X.

Proof. Assume that f is continuous. Let B be an open Fermatean fuzzy subset
of Y and A ⊂ f−1[B]. Then, we get f [A] ⊂ B. Since B is open, then by
Theorem 3.13, there exists a neighbourhood V of f [A] such that V ⊂ B. Thus,
Fermatean fuzzy continuity of f and (4) of Theorem 3.15 imply that f−1[V ] is
a neighbourhood of A. On the other hand from (3) of Theorem 3.10 we have
f−1[V ] ⊂ f−1[B]. Therefore, f−1[B] is a neighbourhood of A as well. As A is an
arbitrary subset of f−1[B], then by Theorem 3.13, the Fermatean fuzzy subset
f−1[B] is open.
Conversely, let A be a Fermatean fuzzy subset of X and V be a neighbourhood
of f [A]. Then, there exists an open Fermatean fuzzy subset L of Y such that
f [A] ⊂ L ⊂ V . Now, from the hypothesis f−1[L] is open. On the other hand, we
can write A ⊂ f−1[f [A]] ⊂ f−1[L] ⊂ f−1[V ]. Hence, f−1[V ] is a neighbourhood
of A which proves the Fermatean fuzzy continuity of f . �

Example 3.17. Consider X = {c1, c2} with the Fermatean fuzzy topology
τ1 = {1X , 0X , A1} and Y = {n1, n2} with the Fermatean fuzzy topology τ2 =
{1Y , 0Y , B1}, where A1 = {⟨c1, 0.7, 0.8⟩ , ⟨c2, 0.9, 0.6⟩} and
B1 = {⟨n1, 0.9, 0.6⟩ , ⟨n2, 0.7, 0.8⟩}.

Let f : X → Y defined as follows:

f(x) =

{
n2 if x = c1,
n1 if x = c2.

Since 1Y , 0Y and B1 are open Fermatean fuzzy subsets of Y , then

f−1[1Y ] = {⟨c1, 1, 0⟩ , ⟨c2, 1, 0⟩},
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f−1[0Y ] = {⟨c1, 0, 1⟩ , ⟨c2, 0, 1⟩} and

f−1[B1] = {⟨c1, 0.7, 0.8⟩ , ⟨c2, 0.9, 0.6⟩} are open Fermatean fuzzy subsets of
X. Thus, f is Fermatean fuzzy continuous.
Example 3.18. Consider X = {c1, c2} with the Fermatean fuzzy topology
τ1 = {1X , 0X} and Y = {n1, n2} with the Fermatean fuzzy topology τ2 =
{1Y , 0Y , B1}, where B1 = {⟨n1, 0.81, 0.59⟩ , ⟨n2, 0.51, 0.92⟩}.

Let f : X → Y defined as follows:

f(x) =

{
n1 if x = c1,
n2 if x = c2.

Since B1 is open Fermatean fuzzy subset of Y , but

f−1[B1] = {⟨c1, 0.81, 0.59⟩ , ⟨c2, 0.51, 0.92⟩} is not open Fermatean fuzzy sub-
set of X. Thus, f is not Fermatean fuzzy continuous.
Remark 3.6. A function f : X → Y is Fermatean fuzzy continuous if and only
if for each closed Fermatean fuzzy subset B of Y we have f−1[B] is a closed
Fermatean fuzzy subset of X.
Corollary 3.19. The following are equivalent to each other:

(1) f : (X, τ1) → (Y, τ2) is Fermatean fuzzy continuous.
(2) cl(f−1[B]) ⊂ f−1[cl(B)] for each Fermatean fuzzy set in Y .
(3) f−1[int(B)] ⊂ int(f−1[B]) for each Fermatean fuzzy set in Y .

Proof. They can be easily proved using Theorems 3.8, 3.10 and 3.16 and Remark
3.6. �
Theorem 3.20. Let (Y, τ) be a Fermatean fuzzy topological spaces, X be a
non-empty set and f : X → Y be a function. Then, there exists a coarsest
Fermatean fuzzy topology τ1 over X such that f is Fermatean fuzzy continuous.
Proof. Let us define a class of Fermatean fuzzy subsets τ1 of X by
τ1 := {f−1[V ] : V ∈ τ}.

We prove that τ1 is the coarsest Fermatean fuzzy topology over X such that
f is continuous.

(1) We can write for any x ∈ X that
αf−1[0Y ](x) = α0Y (f(x)) = 0 = α0X (x).
Similarly, we immediately have βf−1[0Y ](x) = β0X (x) for any x ∈ X

which implies f−1[0Y ] = 0X . Now, as 0Y ∈ τ we have 0X = f−1[0Y ] ∈
τ1. In similar manner, it is easy to see that 1X = f−1[1Y ] ∈ τ1.

(2) Assume that F1, F2 ∈ τ1. Then, for i = 1, 2 there exists Bi ∈ τ such that
f−1[Bi] = Fi which implies αf−1[Bi] = αFi

and βf−1[Bi] = βFi
. Thus,

we obtain for any x ∈ X that
αF1∩F2

(x) = min{αF1
(x), αF2

(x)}
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= min{αf−1[B1](x), αf−1[B2](x)}
= min{αB1(f(x)), αB2(f(x))}
= αB1∩B2(f(x))
= αf−1[B1∩B2](x).
Similarly, it is not difficult to see that βF1∩F2

= βf−1[B1∩B2]. Hence, we
get F1 ∩ F2 ∈ τ1.

(3) Assume that {Fi}i∈I be an arbitrary sub-family of τ1. Then for any
i ∈ I, there exists Bi ∈ τ1 such that f−1[Bi] = Fi which implies
αf−1[Bi] = αFi and βf−1[Bi] = βFi . Therefore, one can get for any
x ∈ X that
α∪

i∈IFi
(x) = sup

i∈IαFi
(x)

= sup
i∈Iαf−1[Bi]

(x)

= sup
i∈IαBi

(f(x))

= α∪
i∈IBi

(f(x))

= αf−1[
∪

i∈IBi](x).
On the other hand, it is easy to see that
β∪

i∈IFi
= βf−1[

∪
i∈IBi]. Thus, we have

∪
i∈I Fi ∈ τ1.

From Theorem 3.16, the continuity of f is trivial. Now, we prove
that τ1 is the coarsest Fermatean fuzzy topology over X such that f is
Fermatean fuzzy continuous. Let τ2 ⊂ τ1 be a Fermatean fuzzy topology
over X such that f is Fermatean fuzzy continuous. If B ∈ τ1 then
there exists V ∈ τ such that f−1[V ] = B. Since, f is Fermatean fuzzy
continuous with respect to τ2 we have B = f−1[V ] ∈ τ2. Hence, we have
τ2 = τ1.

�

Definition 3.21. Let X be a non-empty set and x ∈ X a fixed element in
X. Suppose r1 ∈ (0, 1] and r2 ∈ [0, 1) are two fixed real numbers such that
r31 + r32 ≤ 1. Then, a Fermatean fuzzy point px(r1,r2) = {⟨x, αp(x), βp(x)⟩} is
defined to be a Fermatean fuzzy set of X given by

px(r1,r2)(y) :=

{
(r1, r2) if y = x,
(0, 1) otherwise,

for y ∈ X. In this case, x is called the support of px(r1,r2). A Fermatean fuzzy
point px(r1,r2) is said to belong to a Fermatean fuzzy set F = {⟨x, αF (x), βF (x)⟩}
of X denoted by px(r1,r2) ∈ F if r1 ≤ αF (x) and r2 ≥ βF (x). Two Fermatean
fuzzy points are said to be distinct if their supports are distinct.

Remark 3.7. Let F1 = {⟨x, αF1(x), βF1(x)⟩} and F2 = {⟨x, αF2(x), βF2(x)⟩}
be two Fermatean fuzzy sets of X. Then, F1 ⊂ F2 if and only if px(r1,r2) ∈ F1

implies px(r1,r2) ∈ F2 for any Fermatean fuzzy point px(r1,r2) in X.
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Definition 3.22. Let r1, r3 ∈ (0, 1], r2, r4 ∈ [0, 1) and x, y ∈ X. A Fermatean
fuzzy topological space (X, τ) is said to be:

(1) T0 if for each pair of distinct Fermatean fuzzy points px(r1,r2), p
y
(r3,r4)

in
X, there exist two open Fermatean fuzzy sets L and K such that

L = {⟨x, 1, 0⟩ , ⟨y, 0, 1⟩}
or

K = {⟨x, 0, 1⟩ , ⟨y, 1, 0⟩}.
(2) T1 if for each pair of distinct Fermatean fuzzy points px(r1,r2), p

y
(r3,r4)

in
X, there exist two open Fermatean fuzzy sets L and K such that

L = {⟨x, 1, 0⟩ , ⟨y, 0, 1⟩}
and

K = {⟨x, 0, 1⟩ , ⟨y, 1, 0⟩}.

Example 3.23. Consider X = {c1, c2} with the Fermatean fuzzy topology
τ = {1X , 0X , F1, F2}, where
F1 = {⟨c1, 1, 0⟩ , ⟨c2, 0, 1⟩} and F2 = {⟨c1, 0, 1⟩ , ⟨c2, 1, 0⟩}. Then, (X, τ) is T0 and
T1.

Corollary 3.24. Let (X, τ) be a Fermatean fuzzy topological space. If (X, τ)
is T1, then (X, τ) is T0.

Proof. The proof is straightforward from the Definition 3.22. �

Here is an example which shows that the converse of above corollary is not
true in general.

Example 3.25. Consider X = {c1, c2} with the Fermatean fuzzy topology
τ = {1X , 0X , F}, where F = {⟨c1, 1, 0⟩ , ⟨c2, 0, 1⟩}. Then, (X, τ) is T0 but
not T1 because there exists no open Fermatean fuzzy set K such that K =
{⟨x, 0, 1⟩ , ⟨y, 1, 0⟩}.

Theorem 3.26. Let (X, τ) be a Fermatean fuzzy topological space, r1, r3 ∈
(0, 1] and r2, r4 ∈ [0, 1). If (X, τ) is T0, then for each pair of distinct Fermatean
fuzzy points px(r1,r2), p

y
(r3,r4)

of X, cl(px(r1,r2)) ̸= cl(py(r3,r4)).

Proof. Let (X, τ) be T0 and px(r1,r2), p
y
(r3,r4)

be any two distinct Fermatean fuzzy
points of X. Then, there exist two open Fermatean fuzzy sets L and K such
that

L = {⟨x, 1, 0⟩ , ⟨y, 0, 1⟩}

or

K = {⟨x, 0, 1⟩ , ⟨y, 1, 0⟩}.
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Let L = {⟨x, 1, 0⟩ , ⟨y, 0, 1⟩} be exists. Then, Lc = {⟨x, 0, 1⟩ , ⟨y, 1, 0⟩} is a closed
Fermatean fuzzy set which does not contain px(r1,r2) but contains p

y
(r3,r4)

. Since
cl(py(r3,r4)) is the smallest closed Fermatean fuzzy set containing py(r3,r4), then
cl(py(r3,r4)) ⊂ Lc and therefore px(r1,r2) /∈ cl(py(r3,r4)). Consequently cl(px(r1,r2)) ̸=
cl(py(r3,r4)).

�

Theorem 3.27. Let (X, τ) be a Fermatean fuzzy topological space. Then,
(X, τ) is T1 if px(1,0) is closed Fermatean fuzzy set for every x ∈ X.

Proof. Suppose px(1,0) is a closed Fermatean fuzzy set for every x ∈ X. Let
px(r1,r2), p

y
(r3,r4)

be any two distinct Fermatean fuzzy points of X, then x ̸= y

implies px(1,0)
c and py(1,0)

c are two open Fermatean fuzzy sets such that

py(1,0)
c
= {⟨x, 1, 0⟩ , ⟨y, 0, 1⟩}

and

px(1,0)
c = {⟨x, 0, 1⟩ , ⟨y, 1, 0⟩}.

Thus, (X, τ) is T1. �

4. Conclusions

We defined a Fermatean fuzzy topology, Fermatean fuzzy neighborhood and
Fermatean fuzzy continuous mapping, and obtained some of their properties.
Also we introduced the concept of Fermatean fuzzy points and studied separation
axioms in Fermatean fuzzy topological space. In the future, we will try to
introduce the compactness, and connectedness in Fermatean fuzzy topological
space.
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