DOI QR코드

DOI QR Code

The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer

하계 한국 남부해역 표층수의 탄산계 완충역량

  • HWANG, YOUNGBEEN (Division of Earth Environmental System Oceanography Major, Pusan National University) ;
  • LEE, TONGSUP (Division of Earth Environmental System Oceanography Major, Pusan National University)
  • 황영빈 (부산대학교 지구환경시스템학부 해양학전공) ;
  • 이동섭 (부산대학교 지구환경시스템학부 해양학전공)
  • Received : 2021.12.28
  • Accepted : 2022.02.07
  • Published : 2022.02.28

Abstract

The buffer capacity of southern Korean waters in summer was quantified using data set of temperature, salinity, dissolved inorganic carbon, total alkalinity obtained from August 2020 cruise. The geographical distribution and variability of six buffer factors, which amended the existing Revelle factor, are discussed their relationship with the hydrological parameters of temperature and salinity. The calculated results of six buffer factors showed the spatial variations according to the distributions of various water masses. The buffer capacity was low in the East Sea Surface Mixed Water (ESMW) and South Sea Surface Mixed Water (SSMW) where upwelling occurred, and showed an intermediate value in the Yellow Sea Surface Water (YSSW). In addition, the buffer capacity increased in the order of high temperature Tsushima Warm Current (TWC) and Changjiang Diluted Water (CDW). This means that the Changjiang discharge water in summer strengthens the buffer capacity of the study area. The highest buffer capacity of CDW is due to its relatively higher temperature and biological productivity, and a summer stratification. Temperature showed a good positive correlation (R2=0.79) with buffer capacity in all water masses, whereas salinity exhibited a poor negative correlation (R2=0.30). High temperature strengthens buffer capacity through thermodynamic processes such as gas exchange and distribution of carbonate system species. In the case of salinity, the relationship with buffer capacity is reversed because salinity of the study area is not controlled by precipitation or evaporation but by a local freshwater input and mixing with upwelled water.

2020년 8월 한국 남부해역 해양 조사를 통해 수집된 수온, 염분, 용존무기탄소(DIC), 총알칼리도(TA) 자료를 사용해서 표층수의 완충역량을 정량화하였다. 기존의 Revelle 인자의 문제점을 보완한 여섯 가지 완충 인자의 지리적 분포와 변동성을 분석하고, 수문학적 요인인 수온, 염분과의 관계를 논의하였다. 모든 완충인자들은 수괴에 따른 공간적 분포를 보였다: 완충역량은 용승이 발생했던 동해표층혼합수(ESMW)와 남해표층혼합수(SSMW)에서 낮았으며, 황해표층수(YSSW)에서는 중간값을 보였다. 또한 고온인 대마난류수(TWC)와 장강희석수(CDW) 순으로 크게 나타났다. 이는 하계의 장강유출수가 연구해역의 완충역량을 강화하는 것을 의미하며, 높은 수온과 생물학적 생산력, 하계의 성층화에 의한 혼합 약화가 원인으로 판단된다. 수온-완충역량은 수괴와 상관없이 유의한 양의 상관관계(R2=0.79)를 보였으나 염분-완충역량은 약한 음의 상관관계(R2=0.30)를 보였다. 높은 수온은 열역학적 과정인 기체 교환과 탄산계 화학종 분배를 통해 완충역량을 강화한다. 염분의 경우는 연구해역의 표층 염분이 증발이나 강수가 아닌 국지적인 담수의 유입과 용승수와의 혼합에 의해 변하므로 염분과 완충역량의 관계가 역전된다.

Keywords

Acknowledgement

이 논문은 2020년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(동해 심층해수 및 물질 순환 기작 규명)(20160400).

References

  1. Broecker, W.S. and E. Clark, 2001. A dramatic Atlantic dissolution event at the onset of the last glaciation. Geochemistry, Geophysics, Geosystems, 2(11): 1525-2027.
  2. Broecker, W.S. and T.H. Peng, 1974. Gas exchange rates between air and sea. Tellus, 26(1-2): 21-35. https://doi.org/10.1111/j.2153-3490.1974.tb01948.x
  3. Broecker, W.S. and T.S. Peng, 1982. Tracers in the Sea. Eldigio Press, Palisades, NY, pp. 690.
  4. Cai, W.J., M. Dai and Y. Wang, 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12).
  5. Cai, W.J., R.A. Feely, J.M. Testa, M. Li, W. Evans, S.R. Alin, Y.Y. Xu, G. Pelletier, A. Ahmed, D.J. Greeley, J.A. Newton and N. Bednarsek, 2021. Natural and anthropogenic drivers of acidification in large estuaries. Annual Review of Marine Science, 13: 23-55. https://doi.org/10.1146/annurev-marine-010419-011004
  6. Cai, W.J., Y.Y. Xu, R.A. Feely, R. Wanninkhof, B. Jonsson, S.R. Alin, L. Barbero, J.N. Cross, K. Azetsu-Scott, A.J. Fassbender, B.R. Carter, L.-Q. Jiang, P. Pepin, B. Chen, N. Hussain, J.J. Reimer, L. Xue, J.E. Salisbury, J.M. Hernandez-Ayon, C. Langdon, Q. Li, A.J. Sutton, C.T.A. Chen and D.K. Gledhill, 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 11(1): 1-13. https://doi.org/10.1038/s41467-019-13993-7
  7. Caldeira, K. and M.E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature, 425(6956): 365-365. https://doi.org/10.1038/425365a
  8. Chen, C.T.A. and A.V. Borges, 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10): 578-590. https://doi.org/10.1016/j.dsr2.2009.01.001
  9. Chou, W.C., G.C. Gong, D.D. Sheu, C.C. Hung and T.F. Tseng, 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research: Oceans, 114(C7).
  10. Dickson, A.G. and F.J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10): 1733-1743. https://doi.org/10.1016/0198-0149(87)90021-5
  11. Dickson, A.G., 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers, 37(5): 755-766. https://doi.org/10.1016/0198-0149(90)90004-F
  12. Dickson, A.G., C.L. Sabine and J.R. Christian, 2007. Guide to best practices for ocean CO2 measurement. Sidney, British Columbia, North Pacific Marine Science Organization, pp. 39-87.
  13. Egleston, E.S., C.L. Sabine and F.M. Morel, 2010. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles, 24(1): 1-9.
  14. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682): 362-366. https://doi.org/10.1126/science.1097329
  15. Friedlingstein, P., M. O'sullivan, M.W. Jones, R.M. Andrew, J. Hauck, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, S. Sitch, C.L. Quere, J.G. Canadell, P. Ciais, R.B. Jackson, S. Alin, L.E.O.C. Aragao, A. Arneth, V. Arora, N.R. Bates, M. Becker, A. Benoit-Cattin, H.C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L.P. Chini, W. Evans, L. Florentie, P.M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R.A. Houghton, T. Ilyina, A.K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J.I. Korsbakken, P. Landschutzer, N. Lefevre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D.R. Munro, J.E.M.S. Nabel, S.I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P.I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rodenbeck, J. Schwinger, R. Seferian, I. Skjelvan, A.J.P. Smith, A.J. Sutton, T. Tanhua, P.P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A.P. Walker, R. Wanninkhof, A.J. Watson, D. Willis, A.J. Wiltshire, W. Yuan, X. Yue and S. Zaehle, 2020. Global carbon budget 2020. Earth System Science Data, 12(4): 3269-3340.
  16. Gattuso, J.P. and L. Hansson, 2011. Ocean acidification. Oxford University Press, Oxford, New York, pp. 352.
  17. Gruber, N., D. Clement, B.R. Carter, R.A. Feely, S. Van Heuven, M. Hoppema, M. Ishii, R.M. Key, A. Kozyr, S.K. Lauvset, C.L. Monaco, J.T. Mathis, A. Murata, A. Olsen, F.F. Perez, C.L. Sabine, T. Tanhua and R. Wanninkhof, 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432): 1193-1199. https://doi.org/10.1126/science.aau5153
  18. Hur, H.B., G.A. Jacobs and W.J. Teague, 1999. Monthly variations of water masses in the Yellow and East China Seas, November 6, 1998. Journal of Oceanography, 55(2): 171-184. https://doi.org/10.1023/A:1007885828278
  19. Jiang, L.Q., B.R. Carter, R.A. Feely, S.K. Lauvset and A. Olsen, 2019. Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1): 1-11. https://doi.org/10.1038/s41598-018-37186-2
  20. Laruelle, G.G., H.H. Durr, C.P. Slomp and A.V. Borges, 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15).
  21. Lewis, E. and D. Wallace, 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
  22. Limeburner, R., R.C. Beardsley and J. Zhao, 1983. Water masses and circulation in the East China Sea. In: Proceedings of the International Symposium on Sedimentation on the Continental shelf with Special Reference to the East China Sea, China Ocean Press, Hangzhou, China, pp. 285-294.
  23. Mehrbach, C., C.H. Culberson, J.E. Hawley and R.M. Pytkowicx, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology and Oceanography, 18(6): 897-907. https://doi.org/10.4319/lo.1973.18.6.0897
  24. Middelburg, J.J., K. Soetaert and M. Hagens, 2020. Ocean alkalinity, buffering and biogeochemical processes. Reviews of Geophysics, 58(3).
  25. Millero, F.J., K. Lee and M. Roche, 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 60(1-2): 111-130. https://doi.org/10.1016/S0304-4203(97)00084-4
  26. Monterey, G.I. and S. Levitus, 1997. Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, Washington, D.C., U.S.A., pp. 100.
  27. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka and A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681-686. https://doi.org/10.1038/nature04095
  28. Park, Y.H., 1986. Water characteristics and movements of the Yellow Sea Warm Current in summer. Progress in Oceanography, 17(3-4): 243-254. https://doi.org/10.1016/0079-6611(86)90047-9
  29. Pickard, G.L. and W.J. Emery, 1990. Descriptive Physical Oceanography. Pergamon, Tarrytown, N.Y., pp. 320.
  30. Qu, B., J. Song, H. Yuan, X. Li, N. Li, L. Duan and X. Lu, 2015. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: Regional variations and controls. Continental Shelf Research, 111: 250-261. https://doi.org/10.1016/j.csr.2015.08.017
  31. Redfield, A.C., B.H. Ketchum and F.A. Richards, 1963. The influence of organisms on the composition of seawater. In: The Sea, pp. 26-77. https://doi.org/10.7850/JKSO.2020.25.2.026
  32. Revelle, R. and H.E. Suess, 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1): 18-27. https://doi.org/10.1111/j.2153-3490.1957.tb01849.x
  33. Roden, G.I., 1979. The depth variability of meridional gradients of temperature, salinity and sound velocitTy in the western North Pacific. Journal of Physical Oceanography, 9(4): 756-767. https://doi.org/10.1175/1520-0485(1979)009<0756:TDVOMG>2.0.CO;2
  34. Rubey, W.W., 1951. Geologic history of sea water: an attempt to state the problem. Geological Society of America Bulletin, 62(9): 1111-1148. https://doi.org/10.1130/0016-7606(1951)62[1111:ghosw]2.0.co;2
  35. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono and A.F. Rios, 2004. The oceanic sink for anthropogenic CO2. Science, 305(5682): 367-371. https://doi.org/10.1126/science.1097403
  36. Shim, J., D. Kim, Y.C. Kang, J.H. Lee, S.T. Jang and C.H. Kim, 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27(20): 2623-2636. https://doi.org/10.1016/j.csr.2007.07.005
  37. Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, C. Ho, T. Newberger, C. Sweeney and D.R. Munro, 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry, 164: 95-125. https://doi.org/10.1016/j.marchem.2014.06.004
  38. Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2?. Tellus B: Chemical and Physical Meteorology, 51(3): 701-712. https://doi.org/10.1034/j.1600-0889.1999.t01-2-00010.x
  39. Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono and T. Sato, 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1): 9-17. https://doi.org/10.1007/BF02700744
  40. Wang, S.L., C.T.A. Chen, G.H. Hong and C.S. Chung, 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20(4-5): 525-544. https://doi.org/10.1016/S0278-4343(99)00084-9
  41. Wang, S.Y. and W.D. Zhai, 2021. Regional differences in seasonal variation of air-sea CO2 exchange in the Yellow Sea. Continental Shelf Research, 218: 104393. https://doi.org/10.1016/j.csr.2021.104393
  42. Wolf-Gladrow, D.A., R.E. Zeebe, C. Klaas, A. Kortzinger and A.G. Dickson, 2007. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106(1-2): 287-300. https://doi.org/10.1016/j.marchem.2007.01.006
  43. Xiong, T.Q., P.F. Liu, W.D. Zhai, Y. Bai, D. Liu, D. Qi, N. Zheng, J.W. Liu, X.H. Guo, T.Y. Cheng, H.X. Zhang, S.Y. Wang, X.Q. He, J.F. Chen and R. Li, 2019. Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: from Changjiang (Yangtze River) Estuary to the East China Sea. Earth and Space Science, 6(11): 2115-2141. https://doi.org/10.1029/2019EA000679
  44. Xiong, T.Q., Q.S. Wei, W.D. Zhai, C.L. Li, S.Y. Wang, Y.X. Zhang, S.J. Liu and S.Q. Yu, 2020. Comparing subsurface seasonal deoxygenation and acidification in the Yellow Sea and northern East China Sea along the north-to-south latitude gradient. Frontiers in Marine Science, 7: 686. https://doi.org/10.3389/fmars.2020.00686
  45. Zeebe, R.E. and D. Wolf-Gladrow, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing, pp. 346.
  46. Zhou, Z.Q., S.P. Xie and R. Zhang, 2021. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences, 118(12).