DOI QR코드

DOI QR Code

Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes

양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구

  • JUNG, SUNG-MOK (Department of Chemical Engineering, Dankook University) ;
  • KIM, JAE-YUP (Department of Chemical Engineering, Dankook University)
  • 정성목 (단국대학교 화학공학과) ;
  • 김재엽 (단국대학교 화학공학과)
  • Received : 2022.02.09
  • Accepted : 2022.02.21
  • Published : 2022.02.28

Abstract

Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1C1C1012014). 또한, 이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20017407).

References

  1. M. Gratzel, "Dye-sensitized solar cells", Journal of photochemistry and photobiology C: Photochemistry Reviews, Vol. 4, No. 2, 2003, pp. 145-153, doi: https://doi.org/10.1016/S1389-5567(03)00026-1.
  2. S. Ruhle, M. Shalom, and A. Zaban, "Quantum-dot-sensitized solar cells", ChemPhysChem, Vol. 11, No. 11, 2010, pp. 2290-2304, doi: https://doi.org/10.1002/cphc.201000069.
  3. J. Du, R. Singh, I. Fedin, A. S. Fuhr, and V. I. Klimov, "Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells", Nature Energy, Vol. 5, 2020, pp. 409-417, doi: https://doi.org/10.1038/s41560-020-0617-6.
  4. M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells", Nature photonics, Vol. 8, 2014, pp. 506-514, doi: https://doi.org/10.1038/nphoton.2014.134.
  5. J. W. Jo, M. S. Seo, M. Park, J. Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B. H. Sohn, M. J. Ko, and H. J. Son, "Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material", Advanced Functional Materials, Vol. 26, No. 25, 2016, pp. 4464-4471, doi: https://doi.org/10.1002/adfm.201600746.
  6. D. R. Baker and P. V. Kamat, "Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures", Advanced Functional Materials, Vol. 19, No. 5, 2009, pp. 805-811, doi: https://doi.org/10.1002/adfm.200801173.
  7. W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, and L. M. Peng, "CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes", Journal of the American Chemical Society, Vol. 130, No. 4, 2008, pp. 1124-1125, doi: https://doi.org/10.1021/ja0777741.
  8. S. D. Sung, I. Lim, P. Kang, C. Lee, and W. I. Lee, "Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte", Chemical Communications, Vol. 54, 2013, pp. 6054-6056, doi: https://doi.org/10.1039/C3CC40754C.
  9. Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and J. Bisquert, "High-efficiency "green" quantum dot solar cells", Journal of the American Chemical Society, Vol. 136, No. 25, 2014, pp. 9203-9210, doi: https://doi.org/10.1021/ja504310w.
  10. R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells", Applied Physics Letters, Vol. 93, No. 8, 2008, pp. 083111, doi: https://doi.org/10.1063/1.2973398.
  11. J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L. J. Wan, "Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%", Journal of the American Chemical Society, Vol. 138, No. 12, 2016, pp. 4201-4209, doi: https://doi.org/10.1021/jacs.6b00615.
  12. X. Tong, Y. Zhou, L. Jin, K. Basu, R. Adhikari, G. S. Selopal, X. Tong, H. Zhao, S. Sun, A. Vomiero, Z. M.Wang, and F. Rosei, "Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation", Nano Energy, Vol. 31, 2017, pp. 441-449, doi: https://doi.org/10.1016/j.nanoen.2016.11.053.
  13. S. Gimenez1, I. Mora-Sero1, L. Macor1, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J Diguna, Q. Shen, T. Toyoda, and J. Bisquert, "Improving the performance of colloidal quantum-dot-sensitized solar cells", Nanotechnology, Vol. 20, No. 29, 2009, pp. 295204, doi: http://doi.org/10.1088/0957-4484/20/29/295204.
  14. Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, and X. Zhong, "Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%", Chemistry of Materials, Vol. 27, No. 24, 2015, pp. 8398-8405, doi: https://doi.org/10.1021/acs.chemmater.5b03864.
  15. K. E. Roelofs, T. P. Brennan, J. C. Dominguez, C. D. Bailie, G. Y. Margulis, E. T. Hoke, M. D. McGehee, and S. F. Ben, "Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells", The Journal of Physical Chemistry C, Vol. 117, No. 11, 2013, pp. 5584-5592, doi: https://doi.org/10.1021/jp311846r.
  16. Z. Li, L. Tu, H. Wang, H. Yang, and H. Ma, "TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection", Nanomaterials, Vol. 10, No. 4, 2020, pp. 631, doi: https://doi.org/10.3390/nano10040631.
  17. N . Guijarro, J. M . Cam pina, Q . Shen, T. Toyoda, T. Lana-Villarreal, and R. Gomez, "Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells", Physical Chemistry Chemical Physics, Vol. 13, No. 25, 2011, pp. 12024-12032, doi: https://doi.org/10.1039/C1CP20290A.
  18. J. Y. Kim, J. W. Yang, J. H. Yu, W. H. Baek, C. H. Lee, H. J. Son, T. H. Hyeon, and M. J. Ko, "Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers", ACS nano,Vol. 9, No. 11, 2015, pp. 11286-11295, doi: https://doi.org/10.1021/acsnano.5b04917.
  19. H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, and X. Zhong, "Zn-Cu-In-S-Se quinary "green" alloyed quantum-ot-ensitized solar cells with a certified efficiency of 14.4%", Angewandte Chemie, Vol. 133, No. 11, 2020, pp. 6202-6209, doi: https://doi.org/10.1002/ange.202014723.
  20. H. Zhang, C. Wang, W. Peng, C. Yang, and X. Zhong, "Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode", Nano Energy, Vol. 23, 2016, pp. 60-69, doi: https://doi.org/10.1016/J.NANOEN.2016.03.009.
  21. L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, and X. Zhong, "Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells", RSC Advances, Vol. 8, No. 7, 2018, pp. 3637-3645, doi: https://doi.org/10.1039/C7RA12321C.
  22. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, and X. Zhong, "Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte", Journal of Materials Chemistry A, Vol. 5, No. 27, 2017, pp. 14124-14133, doi: https://doi.org/10.1039/C7TA04344A.
  23. S. Lindroos, Y. Charreire, D. Bonnin, and M. Leskela, "Growth and characterization of zinc sulfide thin films deposited by the successive ionic layer adsorption and reaction (SILAR) method using complexed zinc ions as the cation precursor", Materials Research Bulletin, Vol. 33, No. 3, 1998, pp. 453-459, doi: https://doi.org/10.1016/S0025-5408(97)00254-7.
  24. S. Lindroos, A. Arnold, and M. Leskela, "Growth of CuS thin films by the successive ionic layer adsorption and reaction method", Applied Surface Science, Vol. 158, No. 1-2, 2000, pp. 75-80, doi: https://doi.org/10.1016/S0169-4332(99)00582-6.
  25. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, "Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells", Journal of the Electrochemical Society, Vol. 152, No. 2, 2005, pp. E68, doi: https://doi.org/10.1149/1.1849776.
  26. R. Kottayi, P. Panneerselvam, N. Singh, V. Murugadoss, R. Sittaramane, and S. Angaiah, "Influence of a bifunctional linker on the loading of Cu2AgInS4 QDs onto porous TiO2 NFs to use as an efficient photoanode to boost the photoconversion efficiency of QDSCs", New Journal of Chemistry, Vol. 44, No. 30, 2020, pp. 13148-13156, doi: https://doi.org/10.1039/D0NJ01699C.