DOI QR코드

DOI QR Code

An Experimental Study on Quality Properties of Living Concrete Using Loess-Magnesia Composites

황토-마그네시아 복합체 활용 Living Concrete의 품질특성에 관한 실험적 연구

  • Yun-Wang, Choi (Department of Civil Engineering, Semyung University) ;
  • Young-Woo, Na (Department of Civil Engineering, Semyung University) ;
  • Yong-Woo, Kwon (Department of Civil Engineering, Semyung University)
  • 최연왕 (세명대학교 토목공학과) ;
  • 나영우 (세명대학교 토목공학과) ;
  • 권용우 (세명대학교 건설공학과 )
  • Received : 2022.11.14
  • Accepted : 2022.12.21
  • Published : 2022.12.30

Abstract

In this study, as a result of eva lua ting the quality properties of Living Concrete, the flow of the table showed a tendency to decrease as the mixing ratio of ocher increased. Compressive strength was found to decrease with increasing loess mixing ratio. Density properties were evaluated for weight reduction, As a result of comparison with the panel using cement as a comparison group, the density was measured to be a bout 20 % lower than that of the cement panel, and it is judged that it is less affected by the load and can be installed in the structure. As a result of evaluating the panel temperature reduction, there was a difference in the temperature reduction with time. It is judged that the panel planted with moss has a lower temperature than the panel without moss, so it is judged that it can be used in a vertical greening system.

본 연구에서는 Living Concrete의 품질특성 평가결과 유동성은 황토 혼합율 증가에 따라 테이블 플로우가 감소하는 경향이 나타났으며, 압축강도는 황토 혼합율 증가에 따라 감소하는 것으로 나타났다. 경량화를 위하여 밀도 특성 평가를 실시하였으며, 비교군으로 시멘트를 사용한 패널과 비교한 결과 시멘트 패널의 밀도에 비해 약 20 % 낮은 밀도가 측정되어 하중에 영향을 적게 받아 구조물에 설치가 가능할 것으로 판단된다. 패널온도 저감성을 평가한 결과 시간에 따른 온도 저감의 차이가 나타났으며, 이끼가 착근된 패널이 이끼가 착근되지 않은 패널보다 온도의 저감이 나타나 수직형 녹화시스템에 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2022년 국토교통과학기술진흥원 국토교통기술연구개발사업(22CTAP-C163835-02) 지원사업으로 이루어졌으며, 이에 감사드립니다.

References

  1. Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environmental Challenges, 1, 100004.
  2. Ahsan, M.M., Cheng, W., Hussain, A.B., Chen, X., Wajid, B.A. (2022). Knowledge mapping of research progress in vertical greenery systems(VGS) from 2000 to 2021 using CiteSpace based scientometric analysis, Energy and Buildings, 256(1), 111768.
  3. Cheng, C.Y., Cheung, K.K., Chu, L.M. (2010). Thermal performance of a vegetatedcladding sysrem on facade walls, Building and Environment, 45(8), 1779-1787. https://doi.org/10.1016/j.buildenv.2010.02.005
  4. Chicco, G., Stephenson, P.M. (2012). Effectiveness of setting cumulative carbon dioxide emissions reduction targets, Energy, 42(1), 19-31. https://doi.org/10.1016/j.energy.2011.11.024
  5. Huang, Z., Lu, Y., Wong, N.H., Poh, C.H. (2019). The true cost of "greening" a building: life cycle cost analysis of vertical greenery systems(VGS) in tropical climate, Journal of Cleaner Production, 228, 437-454.
  6. Hwang, H.Z., Moon, J.C,, Kang, N.Y. (2009). A study on construction and quality in accordance with the field application of hwangto concrete, KIEAE Journal, 9(1), 91-97.
  7. Hwang, H.Z., Roh, T.H., Kim, J.I. (2008). Characteristics of strength and durability of hwangto-concrete according to its mixing condition, KIEAE Journal, 8(5), 55-60.
  8. Jiang, Y., Fan, M., Hu, R., Zhao, J., Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas, International Journal of Environmental Research and Public Health, 15(6), 1105.
  9. Lee, N.K., Hwang, H.Z., Park, H.G. (2010). Flexural performance of activated hwangtoh concrete beam, Journal of the Korea Concrete Institute, 22(4), 567-574.
  10. Perini, K., Ottele, M., Fraaij, A.L.A., Haas, E.M., Raiteri, R. (2011). Vertical greening system and the effect on air flow and temperature on the building envelope, Building and Environment, 46(11), 2287-2294.
  11. Prebble, S., Mclean, J., Houston, D. (2021). Smart urban forests: an overview of more-than-human and more-than-real urban forest management in Australian cities, Digital Geography and Society, 2, 100013.
  12. Santamouris, M., Synnefa, A., Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions, Solar Energy, 85(12), 3085-3012.
  13. Shahab, A., Zhang, H., Ullah, H., Rashid, A., Rad, S., Li, J., Xiao, H. (2020). Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: ecological and health risk assessment, Environmental Pollution, 266(3), 115419.
  14. Wang, W.Z., Liu, L.C., Liao, H., Wei, Y.M. (2021). Impacts of urbanization on carbon emissions: an empirical analysis from OECD countries, Energy Policy, 151, 112171.
  15. Wang, Y., Yao, L., Xu, Y., Sun, S., Li, T. (2021). Potential heterogeneity in the relationship between urbanization and air pollution, from the perspective of urban agglomeration, Journal of Cleaner Production, 298, 126822.
  16. Yao, R., Hu, Y., Sun, P., Bian, Y., Liu, R., Zhang, S. (2022). Effects of urbanization on heat waves based on the wet-bulb temperature in the Yangtze River delta urban agglomeration, China, Urban Climate, 41, 101067.