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COHOMOLOGY OF TORSION AND COMPLETION OF
N-COMPLEXES

PENGJU MA AND XIAOYAN YANG

ABSTRACT. We introduce the notions of Koszul N-complex, Cech N-
complex and telescope N-complex, explicit derived torsion and derived
completion functors in the derived category D (R) of N-complexes using
the Cech N-complex and the telescope N-complex. Moreover, we give
an equivalence between the categories of cohomologically a-torsion N-
complexes and cohomologically a-adic complete N-complexes, and prove
that over a commutative Noetherian ring, via Koszul cohomology, via
RHom cohomology (resp. ® cohomology) and via local cohomology (resp.
derived completion), all yield the same invariant.

Introduction

The notion of N-complexes (graded objects with N-differentials d) was intro-
duced by Mayer [13] in his study of simplicial complexes and its abstract frame-
work of homological theory was studied by Kapranov [11] and Dubois-Violette
[3]. Since then the homological properties of N-complexes have attracted many
authors, for example [2,5,7,8,17-19]. Iyama, Kato and Miyachi [10] studied the
homotopy category Ky (B) of N-complexes of an additive category B as well as
the derived category Dy (.A) of an abelian category A. They proved that both
Ky (B) and Dy (A) are triangulated, and established a theory of projective
(resp. injective) resolutions and derived functors. They also showed that the
well known equivalences between homotopy category of chain complexes and
their derived categories can be extended to the case of N-complexes.

Let R be a commutative ring and a an ideal of R. Denote by ModR the
category of R-modules. There are two operations associated to this data: the a-
torsion and the a-adic completion. For an R-module M, the a-torsion elements
form the a-torsion submodule I'q(M) = ligboHomR(R/ai, M) of M. The a-

adic completion of M is Ay (M) = @i>()(R/ai ®gr M). Therefore, we have
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two additive functors
Iy, Aq : ModR — ModR.

The derived category of ModR is denoted by D(R). Then the derived functors
RT,, LA, : D(R) — D(R)

exist. The right derived functors RI'y have been investigated in great length
already by Grothendieck and others in the context of local cohomology. The
left derived functors LA, were studied by Matlis [12] and Greenlees-May [9].

Let a be a weakly proregular ideal of R, this includes the Noetherian case, but
there are other interesting examples. Porta, Shaul and Yekutieli [15] extended
earlier work by Alonso-Jeremias-Lipman [1], Schenzel [16] and Dwyer-Greenlees
[4]. They proved that the derived functors RI'y and LA, can be computed by
telescope complexes, and established the MGM equivalence, where the letters
“MGM” stand for Matlis, Greenlees and May.

The first aim of this paper is to extend works of Porta, Shaul and Yeku-
tieli to the category of N-complexes. We introduce the definitions of Koszul
N-complex, Cech N-complex and telescope N-complex, and explicit derived
torsion functor and derived completion functor in the derived category Dy (R)
of N-complexes using these N-complexes in Section 4 and Section 5, respec-
tively.

Theorem A. Let £ = x1,...,x4 be a weakly proregular sequence in R and a
the ideal generated by x. For any N-complex X, there are functorial quasi-
isomorphisms

RIG(X) = C(x; R) @ X ~ Tel(z; R) ®r X,
Homp(Tel(z; R), X) — LA4(X).

Denote by Dy (R)ator and Dy (R)g.com the full subcategories of Dy (R)
consisting of cohomologically a-torsion N-complexes and cohomologically a-
adic complete N-complexes, respectively (see Definition 6.1). In Section 6, we
show the MGM equivalence in Dy (R).

Theorem B. Let a be a weakly proreqular ideal of R. Then the functors
RFa : DN(R)u—com = DN(R)u-tor : LAu
form an equivalence.

Let a be an ideal in a commutative Noetherian ring R and K the Koszul
complex on a finite set of n generators for a. It is well known that the following
numbers are equal when M is a finitely generated R-module:

en+inf{f e Z|Hy(K ®r M) # 0};

o inf{l € Z|Exts(R/a, M) # 0};

e inf{/ € Z|HY(M) = 0},
where H (M) is the ¢th local cohomology module of M with respect to a. Each
of the quantities displayed above is meaningful. These have been proved to be of
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immense utility even in dealing with problems concerning modules alone. Foxby
and Iyengar [6] proved that the numbers obtained from the three formulas above
coincide for any complex. It is natural to ask if these three approaches yield
the same invariant for N-complexes. The second aim of current paper is to
answer the question for any N-complex and consider its dual statement over
commutative Noetherian rings (see Section 7).

1. Preliminaries and basic facts

We assume throughout this paper that all rings are commutative.
This section is devoted to recalling some notions and basic facts which we
need in the later sections. For terminology we shall follow [2,10] and [18].

N-complexes. Fix an integer N > 2. An N-complex X is a sequence of

R-modules
qntt

L et ) en A e 4D
satisfying dV = 0. That is, composing any N-consecutive morphisms gives 0.
A morphism f : X — Y of N-complexes is a collection of maps f™ : X" —
Y™ making all the rectangles commute. In this way we get a category of N-
complexes, denoted by Cn(R).
For any R-module M, j € Z andt=1,..., N, we define

1 ittt 472

Di(M): - —0— XI—t+ X i

be an N-complex given by X™ = M for all j —t+1<n < jand d" =1y for
all j —t+1<n<yj—1.
Let X be an N-complex. For n € Z, we define

ZH(X) = Ker(d"*=1...d"), BH(X) =Im(d"*---d"") for t=0,..., N,
C}(X) = Coker(d™'---d"™"), HY(X) = ZM(X)/By_,(X) for t=1,...,N—1.
An N-complex X is called N-acyclic if HY(X) = 0 for all n and ¢.

Proposition 1.1 ([10]). Let 0 - X — Y — Z — 0 be a short exact sequence
in Cy(R). Forn € Z and 1 <t < N — 1, there is a long exact sequence of
cohomologies

s HY N2y 5 HP(X) — HE(Y) — HP(Z) — HE (X)) — -

Let X be an N-complex. Define suspension functors ¥, %71 : Ky(R) —
Kn(R) as follows:

0 1 0 0 0

0 0 1 0 0
(EX)":X”JFl@...@X”JrN*l’ dZX: . . . . . . 7

0 0 0 e 01

_gN-1 _gN-2 _4yN-3 _ _g42 _4
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—d 1000
—d?> 01--00

(X)) =X Nt g X" dyix = R
RIS

—dV7t 0000

Let f: X — Y be a morphism in Cy(R). The mapping cone C(f) of f is
defined as

d f 0 - 0 0
0 0 1 - 0 0
CH"=Y"® (EX)", diyp) = D o
o 0 o o0 i
0 —aN-1 _gN-2 ... _g2 _4

Two morphisms f,g: X — Y of N-complexes are called homotopic if there

exists {s" : X" — Y"~N+1} guch that

N—1

gn o fn _ Z dN_l_iSn—Hdi, Y n.

i=0
We denote the homotopy category of N-complexes by Ky (R). This is a tri-
angulated category, and every exact triangle in Ky (R) is isomorphic to the
form

WhereX,YEKN(R)andg:l: Ce
0 000--01

A morphism f : X — Y is called a quasi-isomorphism if the induced mor-
phism Hi(f) : HY(X) — HY(Y) is an isomorphism for any i and t = 1,..., N—1,
or equivalently if the mapping cone C(f) belongs to K57(R) the full subcat-
egory of Ky (R) consisting of N-acyclic N-complexes. The derived category
Dx(R) of N-complexes is defined as the quotient category Ky (R)/K5(R),
which is also triangulated.

Definition 1.2 ([11]). Let ¢ be a primitive N-th root of 1 (¢ = 1), and let
(X,dx), (Y,dy) be two N-complexes of R-modules.
(a) The ¢-Hom is the N-complex Hompg(X,Y") defined by

Homp(X,Y)" = [ [ Homg (X", Y"*")
i€z
with differential d"(f?) = dif™ f* — " fit1d.
(b) The g-tensor product is the N-complex X ®pg Y defined by
(X @rY)" = [[X @rY")
i€z

with differential d"(z ®y) = dx (z) @y + ¢/"lz @ dy (y), where x,y are supposed
to be homogeneous and |z| denotes the degree of x.
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Remark 1.3. (1) By the definition of ¢-Hom and g-tensor product of N-compl-

exes and the isomorphism in [10, Theorem 2.4], one can check the following
isomorphisms:

Hompg(X,XY) = XHomg(X,Y),
Homg(XX,Y) = Homg(X,X7'Y) = ¥ 'Homg(X,Y),
SXQrY 2 XQrYY 2X(X®rY).

(2) It follows from [14, Corollary 4.5] that (X ®p —, Homp(X,

—)) forms an
adjoint pair.

Lemma 1.4. For any morphism f: X — Y in Cy(R) and any N-complex Z,
one has

(1) Homg(Z,C(f)) = C(Homg(Z, f)).

(2) Hompg(C(f), Z) = ¥~ 'C(Hompg(f, Z)).

(3) C(fl@rZ=C(f®Z) and Z@r C(f) = C(Z ® f).
Proof. (1) For any [gl
we have

I

€ Hompg(Z,C(f))" 2 Hompg(Z,Y)"®Hompg(Z,XX),

04' n+14 o n | o't %
dHomR(ZC(f)) [ } de c(f ) [51} —q |:5i+1:| dz

o agi [l T e st
AL gi—qn gty
_ |:d£llomR(Z,Y) HOmR(Z1f)n+l :| |:Oti
= 3 ,

0 dﬁomR(z,Ex) ¢

dHomp (2,v) Hompg(Z,f)"*!

which lmpheb that dHomR(Z c(f) — |: 0

dgHomR(Z.X)
(2) For any [g} € Homp(C(f), Z)" = Homp(Y, Z)" & Homp(2X, Z)",
since [gl} corresponds to a morphism [’ 7] : Y @ (£X)? — Z"F we have

} , as desired.

dT}LIomR( C(f),2) [ ] = d"'“[ i Bi} —q" [ai+1 Bi+l]d’6(f)

. i pitl

e N ISP n i i dy f

= dp ot ] = g [t g ] [T

— [d;+iai_qnai+ld§/ deLJriﬁi_qnaHlle_qnﬁi+1dgx }

dylflom (Y,2) 0 i
— rR(Y:Z) o
| —¢"Hompg(f,2)"+! dﬁomR(Ex,z) [Bl} ’
dy (Z,Y) 0
S . " . omp(Z,
which implies that dHomR(C(“Z) = [

—q"Hompg(f,2)i*1 } , as desired.
(3) These follow from

dgHomR(Z,X)

dygrprz [fRZ dzery ZQf
dC(f)®RZ = [ OR d2X®R2:| and dZ@RC(f) = { OR dZ®R>:x} :

O
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Let & be the class of projective R-modules. An N-complex P is called
semi-projective if P" € & for all n, and every f : P — E is null homotopic
whenever E € K37(R). Let .# be the class of injective R-modules. An N-
complex [ is called semi-injective if I"™ € & for all n, and every f: E — [ is
null homotopic whenever E € K5 (R).

Let X be an N-complex. By Lemma 1.4, we have four triangle func-
tors Hompg(X, —), Homg(—, X) : Kny(R) = Kn(Z) and — @ X, X Qp — :
Kn(R) = Kn(Z). Then [10, Corollary 3.29] yields the following derived func-
tors

];{HOIDR()(7 7), RHomR(f,X) : DN(R) — DN(Z),
- ®% X, X®% —: Dy(R) — Dy(2).
They can be computed via semi-projective and semi-injective resolution of the

N-complexes by [10, Theorem 3.27], respectively.
Let X be an N-complex. The stupid truncation of X are denoted by trun-

cation 75;(X): 0 — X — X2 ... and 7 (X) 1 - = XL = XT 0.
For i,j € Z let CE@’J](R) be the full subcategory of Cx(R) whose objects are
the N-complexes concentrated in the degree range [i,7] := {i,...,j}. Here is

a useful criterion for quasi-isomorphisms.

Lemma 1.5. Let R and R’ be two rings, F,G : ModR — Cn(R') two additive
functors, and let n : F — G be a natural transformation. Consider the exten-
sions F,G : Cy(R) — Cy(R'). Suppose X € Cn(R) satisfies the following
conditions:

(1) There are jo,j1 € Z such that F(X%),G(X?) € C%O’]l](R’) for every

i€ Z.
(2) The homomorphism nxi : F(X?) — G(X?) is a quasi-isomorphism for
every i1 € Z.
Then nx : F(X) = G(X) is a quasi-isomorphism.
Proof. Assume that X is bounded. If X ~ Di(M) for some R-module M and
i € Z, then this is given. Otherwise the inductive step is done using the short
exact sequence
0— T>7;(X) —- X = Tgi(X) —0
of N-complexes. Now assume X is arbitrary. We prove that Hy(nx) : H;(F(X))
— Hi(G(X)) is an isomorphism for every i € Z and a fixed ¢. For any i < j
set 7[; ] *= T<j © T>;- Given an integer ¢, the morphism H:(nx) only depends
on the morphism
Tli— N+t,i+t] (nx) : Tli—N+t,i+t] (F(X)) — Tli—N+t,i+t] (G(X))
of N-complexes. Thus we can replace nx with 7x/, where
X' = Tjjorio Nt s +ite) (X).

But X’ is bounded, so the morphism 7y is a quasi-isomorphism. (I
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2. The Koszul N-complex

In this section, we give a construction of Koszul N-complexes and compute
the cohomology of a few concrete Koszul N-complexes.

Definition 2.1. Let = be an element in R. The Koszul N-complex on z,
denoted by K*®(x; R), is the mapping cone C(x) of x : DY(R) — DY(R)

0>R5R5 - LHRE5 R0

with R in degrees —N + 1,...,0. Suppose we are given a sequence & =
T1,...,Tq of elements in R. By induction, the Koszul N-complex on x, de-
noted by K*(x; R), is the mapping cone C(z4) of x4 : K*(z1,...,24-1; R) —
K.(xla <oy Td—1; R)

One can check that K*(x; R) = K*(z1; R) ®g - - ®r K*(24; R).

Example 2.2. Let z,y, z be three elements in R.
(1) For N = 3, the Koszul 3-complex on z is

K*(x;R):0 5 R5R5R—0
with R in degrees —2, —1,0. The Koszul 3-complex on z,y is

y 0
0 1
—Tr —X

1 1y0
}?@%RyOHR[ﬂ]W e L083), po 1o 5 g
with the five nonzero modules in degrees —4,...,0. The Koszul 3-complex on
T,y, 2z is
1 2z 0 0 0 0
z 0 0 -1 0 =z 0 0 O
0 1 0 00 0 1 0 0
555 |is8si
[_11} ly Oy -1 0 Y-y -1 —y 01
K*(z,y,2R):0 >R —1= R} -0 ¢ -, RO 0 = = 00—
y 0z 0 0 0 0
01 0 z 0 0 0
—x —x 0 0 z 0 O
00 0 0 0 1 0 1y0200
089 0,00 L] lbigsr s
RT Y~y vl, pe L000001J, p3 R—0
with the seven nonzero modules in degrees —6, ..., 0.
(2) For N = 4, the Koszul 4-complex on z is
K*(x:R):05>RS5RBRE5 R0
with R in degrees —3,—2, —1,0. The Koszul 4-complex on z,y is
y 0 O
1 0 0 1 0
DN E]
K*(z,y;R): 0= R R — -, g 777
1900
[0%10} [1y0] .
Rt Looo1d, p3 l001 Rg[ Y] R—0
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with the seven nonzero modules in degrees —6, ..

on z,y, 2 is

386

—
—
OO0 —HO O 8
—
Oooo—Hoo | o 8

000100ﬂ00$

—

Co—Hoooo | HOo
>

[=lylelelele] | o—HO

NOOoCOoOOoCO ﬂJl (o))

—
oOoO—O _1
—
o—HO | (=Rl

—
—~Ooo | — O

&

e —
—
OO O0OO0OoO0OoOHO O |

000000010017.0
[elejolelolelylele) 7y00
—
OO 00O HOOO | OO
—
OO OO—HOOOOO | 8
OO O—HOOOOoO 7Uu0 8
OO HOOOOOO 7y0 8
ONOOCOOoOoOoO 7Uu10

Nelolelelelele]o) 7y1 [}

—
— | [slslelslaleloelelele)]

L |
cococooooo—o

[=lelelolelololol ) 7y0
—
[slelolalelalelolele)] | o

—
[elelslslolalolelolele] |

OO0 0OHOOOO 7y

OO0 O—HOOOOO =

|
00010000004
,

OO NOOOOO0O

x

(=)
(=}
(=)

8

O NO OO0 0oO

>

B

=

NROOOOOOOO0 | 8
—

o | [slslelalalalolaie]

—
—O | [slslelalelalelaie]

&

&

[elololelelelelelo] 7y

[elolslojolelelole) mﬂ

[elolslojlolelolele) 7Uu

=
000001000%

]
O OO0 OHOOOO |

[eXeloi jolelelole]
[=XeiNelolelololo]
[=Nelelolelelole]

NOOoOOOoOoCO

-z —xy —ay —y

oo MwOOOOOO
o —HO M,:WOOOOOO

00 ﬂoooooo

&

K*(x;R)®r X.

J(K*(z; X)) for j € Z.

.,xq be a sequence of elements in R and X an

N-complex. The Koszul N-complex of & on X is the N-complex

K*(z; X):

., N — 1, the Koszul cohomology of & on X is

(z; X)

J
i

We next define the Koszul N-complex on IN-complexes and Koszul coho-

mology.
Example 2.4. Let z,y be two elements in R and M an R-module.

with the ten nonzero modules in degrees —9, ...

Definition 2.3. Let z = xq,..

Fort=1,..
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(1) For N = 3, the Koszul 3-complex of z on M is
K*(a;M): 0= M3 M5 M0
with M in degrees —2, —1,0. Therefore, one has that
Hy? (25 M) = Hy ™ (23 M) = 0,
Hy'a; M) = Hy?(a; M) = (0 1y ),
HY (2; M) = HY(2; M) = M/xM.
The Koszul 3-complex of x,y on M is

y O
4] . L84
Therefore, we conclude that
H (2, y; M) = Hy* (z,y; M) = 0,
Hy % (2, y; M) = Hy * (2, y; M) = (020 (2,9)),
HY (2, y; M) = Hy (2, y; M) = M/(z,y) M.
(2) For N = 4, the Koszul 4-complex of x on M is

K®(z,y; M) :0 — M M? M — 0.

K*(a:M): 05 M5 M5 M5 M0
with M in degrees —3, —2,—1,0. Therefore, one has that
H % (2; M) = Hy * (2 M) = Hy?(a; M) = Hy *(2; M) = Hy ' (a; M)
= Hy ' (z; M) = 0,
Hy 3 (2 M) = Hy ?(z; M) = Hy Ha; M) = (0 2 2),
HY (2; M) = Hy(a; M) = H3(2; M) = M/xM.
The Koszul 4-complex of z,y on M is

1 0
(4], (9 4]
K*(z,y; M) : 0> M
[641] (2 v]

Therefore, one obtains that
Hy % (@, y; M) = H; (2, y; M) = 0 for t = 1,2,3,
Hy (a2, y; M) = Hy*(z,y; M) = Hy (2, M) = (0 20 (2,9)),
HY (2, y; M) = Hy (2, y; M) = HY(x, y; M) = M/(x, y) M.

(3) Let £ =x1,...,24 be a sequence in R. The Koszul N-complex on z; is

M2

M3 M? M = 0.

K*(xy;M): 05 M S M5 .o 5 M3 M0
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with M in degrees —NN + 1,...,0. Therefore, one has that
Hy"(z1; M) = (0:pg 2y) fort =1,...,N — 1,

HY(z1; M) = M/z1M for t=1,...,N — 1,
H V(z;;M)=0fort=1,...,N —1.
Consider the exact sequence of N-complexes
0— K*(x1; M) = K*(z1,29; M) = XK*(z1; M) — 0,
which implies that
H; N (K® (21,20, M) = (0 13 (@1, 22)) fort =1,...,N — 1,

HY(K*® (21,29, M)) = M/(x1,29)M for t =1,...,N — 1,

Hy YK (003 M) = 0 for £ =1, N — 1.

By induction, one obtains that

{Ht’“N%w;M):O G=2 =1, N1

H "N (@, M)=0 d=2k-1

H "N (g, M) = (0: 2) d=2k

’ fort=1,...,N —1

{Ht_kN_t(:c;M)—(O ) d=2%k+1 T :

HY(x; M) = M/xM fort =1,...,N — 1.

Proposition 2.5. Given a sequence of elements x = (x1,...,24) in R, one
has an isomorphism in Ky (R)

K*(x; R) = X%Homp(K*(x; R), R).

Proof. For x; there exists an exact triangle R = R — K*(z1;R) — XR in
Ky (R). Applying the functor RHompg(—, R) to this triangle, one gets an exact
triangle

Y 'R — Hompg(K*(z1;R),R) - R R.
Thus K*(z1; R) & YHomp(K*(x1; R), R) in Ky(R). For xs there exists an
exact triangle K*(z1;R) 2 K*(z1;R) — K*(z1,29; R) — YK*(z1; R) in
Ky (R). Applying the functor RHompg(—, R) to this triangle, one gets an exact
triangle
Y Homp(K*(z1; R), R) — Hompg(K®(x1,22; R), R)
— Homp(K*(z1; R), R) - Homp(K*(z1; R), R),

which implies that K®(z1,22; R) = Y?Hompg(K*(z1,72; R),R) in Ky(R).
Continuing this process, we obtain the isomorphism we seek. (I
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3. The Cech N-complex

For z € R, the localization R, is obtained by inverting the multiplicatively
closed set {1,z,22,...}. Let ¢+ : R — R, be the canonical map sending each
r € R to the class of the fraction r/1 € R,. This section gives a construction
of Cech N-complexes.

Construction 3.1. Let x be an element in R. We have a commutative dia-
gram:

K*(z%R): 0—=R R R>R—>0
K*(+%R): 0— >R R R-“~R— >0
K*(z;R): 0——R R R—">R——=0.

Applying the functor Homp(—, R) to this diagram, we have a commutative
diagram:

0—=R—>R R R——0
| ¥ oy
0——=R——R R R——0

1/,3

0—R——R

I

-
8
-

8

=
=
=)

<
)

C <=
8

In the limit we get the following N-complex
0—+R% R, Ry — - Ry =0

with modules R in degree 0 and R, in degrees 1,..., N — 1, which is called the

Cech N-complex on z, denoted by C* (z; R). We also have an exact triangle in
Kn(R)

> 'R, - C*(x;R) - R 5 R,.
Let z,y be two elements in R. Then the morphisms

K*(@z*R): 0——R R

I o o

K*(z* "% R): 0——=R R

L

-
8
<
-
<

s—1

.
|
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s

K*(%R): 0——=R R R—+=R——=0
K*(+* " R): 0— >R R RESR——0

induce a commutative diagram in Cy(R):

0—— K*(@*;R) ——— K*(2*,y*; R) ————= YK*(z*; R) ——0

v ; =

0—=K*(z*" 4 R) —=K*(z* 1,9 1, R) —=SK*(2* 1 R) ——= 0.
Applying the functor Hompg(—, R) to the diagram, one obtains a direct system
Homp (K*(z,y; R), R) — Hompg(K*®(2,y* R), R)
— Hompg(K*(2*,9% R),R) —

In the limit we get an N-complex @Hom r(K*(z®,y%; R), R), which is called
the Cech N-complex on z,y, denoted by C*(z,; R). We also have an exact
triangle in Ky (R):

Y7'C*(z; R), — C*(z,y; R) — C*(x; R) = C*(x; R),.

For a sequence = (x1,...,2q) of elements in R, set &° = «f,..., 2 and
y = (z1,...,24_1). By induction, the Cech N-complex C*(x; R) on z is
li_H;HornR(K°(mS; R), R) and we have the following exact triangle in Ky (R):

YOy Ry — C* (a5 R) = C*(y: R) = C*(y; R)a,-
In fact, by induction, one can obtain the following isomorphism
C*(z; R) = C*(z1; R) ®g - -- ©r C*(2a; R).
Example 3.2. Let 2,y be two elements in R.
For N = 3, the Cech 3-complex on zx is
C*(x;R): 0= RS R, 5 Ry — 0.

Therefore, the Cech 3-complex on z,y is

: ) [ 0]

C*(z,y;R): 0 - R—% R, ® R, —>* R, ® R,, ® R,

[Ly 0 —Lm]

01—y [171]

Ry ® Ry —— Ryy — 0,
where the five nonzero modules are in degrees 0,1,2,3, 4.
For N = 4, the Cech 4-complex on x is

C*(x;R):0 > RS Ry 5 Ry 5 Ry — 0.
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Therefore, the Cech 4-complex on z,y is

100

10 1y, 00

2 B

S Ly 01 001

C*(z,y;R): 0> R— R, &R, —— R, R, ® R,

Ly 00 —ig
] 481

Ray ® Ry 21 R,y — 0,
where the seven nonzero modules are in degrees 0,1, 2, 3,4, 5, 6.

Lemma 3.3. For a sequence x = x1,...,24 n R, the natural morphism
e : C(m;R) — R (R is viewed as the N-complex D{(R)) induces a quasi-
isomorphism

e®1,1®e:C(x;R) ®p C(x; R) — C(x; R).
Proof. By symmetry it is enough to look only at
1®e:C(xR)®p C(z; R) — C(z; R).

Since the N-complexes C' (z;; R) are semi-flat, it is enough to consider the case
d =1 and x = 1. We have the following commutative diagram:

0 0 0

0—Y"1R, C(z; R) R 0
0 0 0
Note that z : R, — R, is an isomorphism in Dy (R), it follows that
Y7 1C(z; R),
is acyclic. This completes the proof. O

Given an N-complex X, set C*(x; X) := C*(z; R) @ X. The R-module
) (z; X) = H(C(x; X)) for t =1,...,N — 1
is the jth Cech cohomology of  on X.
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Example 3.4. (1) Let « be an element in R. Then
H(x;R) = {r € R|r/1=0in R,}
={r € R|a°r =0 for some s > 0}

= U (0 ‘R xs) = @HomR(R/(xs), R),

s=20

HY ,(z;R)=R,/Rfort=1,...,N —1.

(2) Let = x1,...,xq be a sequence of elements in R and M an R-module.
The Cech N-complex of x1 on M is

Clay; M) : 0= M My, 5 My, 5o 5 My, =0

with modules M in degree 0 and M, in degrees 1,..., N — 1. Therefore, one
has that

HY (213 M) = ligHomR(R/(ms),M) fort=1,...,N—1,
HYy ,(x1;M) =M, /M fort=1,...,N —1,
HN(zy; M) =0fort=1,...,N — 1.
Consider the exact sequence of N-complexes
0— X7 1C(x1; M)y, — Clxy, 19, M) = C(a1; M) — 0,
which implies that
HY (1, 295 M) = @HomR(R/(xf,xi),M) fort=1,...,N—1,
HY (21; M) = My, 4, /(ImM,,, +ImM,,) for t =1,...,N — 1,
I:I%fi(xl,mQ;M) =0fort=1,...,N —1.
By induction, one obtains that

{f{{(m;M)_Oforj>kN d=2k—1

=N forl<t< N -1,
Hy_ (& M)=0forj > kN +t d=2k or

AS DN (@ M) = My, 0y /S image My, oy yowy d=2k—1
HEN (2 M) = My, ., /S5 image My, oy sy n d =2k

forl<t<N-—-1,
HY(x; M) %liﬂHomR(R/(mS%M) for 1<t< N -—1.

4. Derived torsion of IN-complexes

In this section, we explicit derived torsion functors in Dy (R) using the Cech
N-complex.
Let a be an ideal of R. For each R-module M, set

T'a(M)={m € M |a"m = 0 for some integer n}.
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There is a functorial homomorphism oy : Tq(M) — M which is just the
inclusion. When they coincide, M is said to be a-torsion. The association
M — T'q(M) extends to define a left exact additive functor on Cy(R), it is
called the a-torsion functor. By [10, Corollary 3.29], the functor I', has a right
derived functor

RT, :Dy(R) —» Dyn(R), £: Ty — RI,
constructed using semi-injective resolutions.
Proposition 4.1. There is a functorial morphism o% : R[4(X) — X such
that ox = o o &x as morphism Tq(X) — X in Dy (R).
Proof. Let X = I be a semi-injective resolution, and define cf¥ = a~!'ooyo
&7 oRI'g(). This is independent of the resolution. O

For each N-complex X and ¢ € Z, the ith local cohomologies of X with
support in a is
H{ (X) = H{(R[o(X)) for t =1,...,N — L.
Example 4.2. Let R = Z and p be a prime number, and let M be an inde-
composable R-module. By the fundamental theorem of Abelian groups, M is

isomorphic to Z/dZ, where either d = 0 or d is a prime power. In either case
the 3-complex

0 Q/dZ — Q/Z > Q/Z — 0

is an injective resolution of Z/dZ. In what follows, Z, denotes Z with p inverted.
Case 1. If M = Z/p°Z for some integer e > 1, then applying I'¢,y(—) to
the resolution above yields the 3-complex

0 = Zp/p°Z = Lp)Z = Tp]Z — .
Hence one obtains that
Htl),(p)(M) = H(Q),(p)(M) = Z/peZ = M7

Case 2. If M = Z/dZ with d nonzero and relatively prime to p, then
applying I'(;;)(—) to the resolution above yields the 3-complex

0 — dZ,/dZ — Ty -~ 7,7 — 0.
Thus we conclude that
H%,(p)(M) =Zp/(dZy +7) = H%,(p)(M)7
HY (M) =H3 (M) =0=Hj (M) =H3 ,(M).

Case 3. If M = Z, then applying I'(,y(—) to the resolution above yields the
3-complex

0— 0= Z,/Z > Z,)7 — 0.
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Therefore, one has that
Hy ) (M) = Z,/Z = B3 (M),

HY () (M) = H () (M) = 0 = Hy (M) = Hj , (M).

P)

Following [16], an inverse system { M, };cn of abelian groups, with transition
maps pj,; : My — M;, is called pro-zero if for every 4 there exists j > ¢ such
that p;; is zero.

Definition 4.3. (1) Let = z1,...,24 be a sequence of elements in R. The
sequence x is called a weakly proregular sequence if for every ¢ < 0 and ¢t =
1,...,N —1 the inverse system {H:(K®(x*; R))}sen is pro-zero.

(2) An ideal a of R is called a weakly proregular ideal if it is generated by
some weakly proregular sequence.

Let x be an element in R. For any s > 0, we have a morphism of N-complexes

s

K*(%R):0—=R R R———=R 0
NN
DY(R/(x%)): 0 0 0 0 R/(z°) —=0

which induces the following morphism of inverse systems
i —>= K*(2% R) —= K*(2%; R) — K*(x; R)

(4.1) I | W
c——= R/(2?) R/(x?) R/(x),

where R/(x%) is viewed as the N-complex D{(R/(z*)). Let X be an N-complex.
(4.1) yields a morphism of direct systems:

Homg(R/(z), X) — Homp(R/(2?), X) — Hompg(R/(23), X) — - -

i | i

Hompg(K*(z; R), X) — Homp(K*(2?; R), X) — Hompg(K* (2% R), X) — - -

This gives rise to a functorial morphism of N-complexes

Op, X ° hﬂ»oHomR(R/(xs)vX) —>li$5>0HomR(K'(xs; R),X)=C(z; R)®rX.

Let € = x1,...,x4 be elements in R. The Koszul N-complex on «° is the
N-complex K*(z°; R). This is equipped with a morphism of N-complexes
of ¢ : K*(x*; R) — R/(x*). Therefore, we obtain an inverse system of N-
complexes

s K (2 R) - K*(2*;R) — --- — K*(x; R),

compatible with the morphisms #* and natural maps R/(z*T1) — R/(z*).
The next result provide an explicit formula for computing RT'.
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Theorem 4.4. Let x = x1,...,xq9 be a weakly proreqular sequence in R and
a the ideal generated by x. For any N-complex X, there is a functorial quasi-
isomorphism

Snx :RIG(X) — C(x R) ®r X.

Proof. If d = 1, then by construction of «°, we have a quasi-isomorphism of
N-complexes

Hy: 0—— (0:paf) —— (0:paf) —— - —— (0 :p.2%) ——> 0 ——>0

|

(z%) 0.

Write F(Y) :=T',)(Y) and G(Y) := ligonomR(K'(xf;R),Y) for any N-
complex Y. Let I be a semi-injective N-complex. It is enough to show that
dz,.1 = F(I) = G(I) is a quasi-isomorphism. By Lemma 1.5 we may assume
that I is a single injective module. For each j € Z andt =1,...,N — 1, one
has that

<>

s
Ty

R R

Kery®: 0

H{ (ling o Hom p(Kery®, 1)) 2 lim, s o Hf (Hom g (H, T))
= lim.oHomp (Hy',(H,), 1)
= lim .o Homp (Hy, (K*(21; R)), 1)
Since x1 is weakly proregular, it follows that li l'ﬂDoHomR(H;Vj J(K*(z1;R)), 1)
=0forj>0andt=1,...,N — 1. Hence lglonomR(Kem" 1) is acyclic,

and so F'(I) 2 G(I) in Dy(R). Now assume d > 1 and proceed by induction

on d. Let X =5 I be a semi-injective resolution and set y = z1,...,zq_1. One
has the following isomorphisms

RT'4(X) 2 limy, - oHomp (R/(), )

= lim,oHomp(R/(y°) @r R/(23), 1)

= lim,soHomp(R/(y°), limgsoHomp (R/(27), 1))

=~ lim,>oHomp(K*(y'; R), limssoHomp (K *(23; R), 1))

= lim,oHomp (K* (¢ R) @r K*(23; R), )
= lim,..Homp (K*(a; F). I)
~ C(z; R) ®r X,

where the second one holds as R/(z°) = R/(y®) ®r R/(x5), the third one is

Hom-tensor adjointness, the fourth one is by induction, as claimed. (|

Corollary 4.5. Letx = x1,...,x4 be a set of generators for a weakly proreqular
ideal a, and let X be an N-complex.

(1) The morphism UEFE((X) : R4 (RT (X)) — R4 (X) is an isomorphism.
Thus the functor RT'q : Dy(R) — Dy (R) is idempotent.
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(2) There is a natural isomorphism Hj ((X) = Hj(z; X).
5. The telescope N-complexes and derived completion

This section introduces the notion of telescope N-complexes and explicits
the derived completion functor in Dy (R) using it.

Definition 5.1. Let {e;|¢ > 0} be the basis of the countably generated
free R-module @, R. Given an element x € R, define the morphism v :
DYP:2, R) = DY(P;-, R) of N-complexes by
sy = { ifi=0,
v €;i—1 — Xe; ifi}l.

The telescope N-complex Tel(z; R) is the N-complex ¥ ~1C(v)

O%éR&éR#éR—)---—%éR—)O
1=0 1=0 1=0 1=0

concentrated in degrees 0,1,..., N — 1. Given a sequence € = x1,...,24 in R,
we define

Tel(x; R) := Tel(z1; R) ®p - - - ®g Tel(xq; R).
Then Tel(x; R) is an N-complex of free R-modules.

Lemma 5.2. Let * = x1,...,24 be a sequence in R. One has a quasi-
isomorphism
wy, : Tel(x; R) — C(x; R).

Proof. For any z;, by [15, Lemma 5.7], one can define a quasi-isomorphism of
N-complexes

Tel(z;;R): 0 —= @iy R—— P R— —P; R—=0
C(z;;R): 0 R “—> R, e R, 0,
where wij =... = wi\;’l. Therefore, we have

Tel(x; R) = Tel(z1; R) @r - - - ®r Tel(zq; R)
S C(z1;R) @R - ®p Czg; R) = C(x; R).
This shows the quasi-isomorphism we seek. (I

Corollary 5.3. Let x and y be two finite sequences in R and let a = (x) and
b= (y). If Ja= /b, then Tel(x; R) and Tel(y; R) are homotopy equivalent.

Proof. By Lemma 5.2, we have two quasi-isomorphisms
Tel(x; R) = C(x; R), Tel(y; R) = C(y; R).

But C(x;R) = C(y; R) in Dy(R), it follows that Tel(z; R) = Tel(y; R) in
Dy (R). Consequently, Tel(x; R) and Tel(y; R) are homotopy equivalent. O
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Corollary 5.4. Let € = x1,...,x4 be a weakly proregular sequence in R and
a the ideal generated by x. For any N-complex X, there is a functorial quasi-
isomorphism

RT4(X) — Tel(z; R) ®p X.
Let a be an ideal of R. We have an inverse system
.= R/a®> - R/a®> - R/a.
Following [9], for an R-module M we write
Aa(M) := lim, o (R/a* @5 M)

for the a-adic completion of M. We get an additive functor A, : ModR —
ModR and there is a functorial morphism 75y : M — Aq(M) for any M €
ModR. By [10, Corollary 3.29], the functor A4 has a left derived functor

LAo(~) : Dy(R) — Dy (R), € : LAq — Aq

constructed using semi-projective resolutions. For any N-complex X € Dy (R),
by analogy with Proposition 4.1, there is a functorial morphism 7% : X —
LA, (X) in Dy (R) such that £ o 7% = 7y as morphism X — Aq(X).

Let = be an element of R and X an N-complex. Then the diagram (4.1)
yields a morphism of inverse systems:

-+ —> Homp(Homp (K*(z%; R), R), X) — Hompg(Homp(K*(z; R), R), X)

i

i > R/(2>) @ X R/(z) ®p X.

This gives rise to a functorial morphism of N-complexes

Ax : Hompg(Tel(z; R), X) ~ Hompg(C(z; R), X)
— @s>O(R/(xs) R Y) = A(:Jv) (X)
The next results provide an explicit formula for computing LA,.

Theorem 5.5. Let ¢ = x1,...,x4 be a weakly proregular sequence in R and
a the ideal generated by x. For any N-complexr X, there is a functorial quasi-
isomorphism

Homp(Tel(z; R), X) — LA4(X).
Proof. 1t is enough to consider a semi-projective N-complex X = P. By
Lemma 1.5 we reduce to the case of a single projective module P. By [15,

Theorem 5.21], one can obtain a quasi-isomorphism Hompg(Tel(z1; R), P) =
A(z,)(P) in Dy (R), where A(;,)(P) is viewed as the N-complex D?(A(ml)(P)).
By induction, we obtain the quasi-isomorphism we seek. ([

Corollary 5.6. Let a be a weakly proregular ideal of R.
(1) For any N-complex X, there exists a functorial quasi-isomorphism

RHompz(RI4(R), X) — LAL(X).
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(2) The morphism TI]jAn(X) : LAG(X) = LAL(LAG(X)) is an isomorphism.
Thus the functor LA, : Dy (R) — Dy (R) is idempotent.

6. MGM equivalence of N-complexes

The task of this section is to prove the MGM equivalence in Dy (R), i.e.,
we show an equivalence between the category of cohomologically a-torsion N-
complexes and the category of cohomologically a-adic complete N-complexes.

Definition 6.1. (1) An N-complex X € Dy(R) is called cohomologically
a-torsion if the morphism o% : R[4 (X) — X is an isomorphism. The full
subcategory of Dy (R) consisting of cohomologically a-torsion N-complexes is
denoted by Dy (R)q-tor-

(2) An N-complex Y € Dy (R) is called cohomologically a-adic complete if
the morphism 7 : Y — LA4(Y) is an isomorphism. The full subcategory of
Dy (R) consisting of cohomologically a-adic complete N-complexes is denoted
by DN(R)a—Com-

We first show that the functor RI', is right adjoint to the inclusion
DN(R>a—tor — DN(R)
and the functor LA, is left adjoint to the inclusion Dy (R)qg.com < Dy (R).

Proposition 6.2. (1) The morphism 0% : R[4(Y) — Y induces an isomor-
phism

Homp y (g). ... (X, RTa(Y)) — Homp (g (X,Y),

V X € Dy(R)gtor; Y € Dy(R).
(2) The morphism 7% : X — LA4(X) induces an isomorphism

Homp , (r)..com (LAG(X),Y) — Homp , (r)(X,Y),
¥V X € Dy(R), Y € Dy(R)a-com-

Proof. We just prove (1) since (2) follows by duality.
We need to show that

ox,y : Homp  (ry, .., (X, R[4(Y)) = Homp , (g)(X,RTa(Y))
— HOHIDN(R)(X, Y)

is an isomorphism. Referring then to the diagram
Homp,, gy (X,Y) — Homp , (g)(RTa(X), R[4 (Y)) <~ Homp,, () (X, RT4(Y)),

where v is the natural morphism and p is induced by the isomorphism o% :
RI4(X) — X. Next we show that p~'v is inverse to ox,y. That ox yp~'v(a)
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= « for any a € Homp , () (X,Y’) amounts to the (obvious) commutativity of
the diagram
RTq (a)

RT4(X) RT,(Y)
X | — Y
X—r V.

That p~'vox,y(8) = B8 for 8 € Homp, (g)(X,RI4(Y)) amounts to commuta-
tivity of

R4 (B)
RIa(X) RIG(Ra(Y))
T
R~ ~
B
X R, (Y).
This shows the isomorphism we seek. O

Here is the main result of our paper, similar results can be found in [15,
Section 7].

Theorem 6.3. Let a be a weakly proregular ideal of R.

(1) For any X € Dy(R), the morphism LAy (0%) : LAq(RTq (X)) — LAL(X)
is an isomorphism.

(2) For any X € Dn(R), the morphism RT(7%) : RT4(X) — RT4(LAL(X))
is an tsomorphism.

(3) For any X € Dy(R), one has R['4(X) € Dy(R)gtor and LAL(X) €
DN(R)CI—COH]'

(4) The functors RT'y : Dn(R)g-com = DN (R)ator : LAy form an equiva-
lence.

Proof. (1) By Corollary 5.4 and Theorem 5.5, we have a commutative diagram:

LAD(O'EEQ)
LAG(RTa(X)) LAG(X)

_i RHompg (R4 (R),o R i_
RHomp(RTq(R), R4 (X)) n (Rl (1).7%) RHomp(RI4(R), X).

Since R[4 (R) € Dy (R)a-tor, it follows from Proposition 6.2(1) that

RHomp (RT(R), o%) is an isomorphism,
so is LAq (o).
(2) By Corollary 5.4 and Theorem 5.5, one has a commutative diagram:

RT.(R) @4 X — WO Ry (R) @k LA (X)

l RL.(7%) i

RI'(X) RIa (LA (X)).
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Let E be a faithful injective R-module. Applying the functor RHompg(—, E)
to R[4 (R) ®% 7%, we have a commutative diagram:

RHomp(RTa(R)®% 7Y% ,E)

RHomp(RT4(R) ®% LA4(X), E) RHomp(RT4(R) ®% X, E)

:l ~

omp (7%, LAy
RHom(LAq(X), LAq(E)) [ftomn (7 LA (5) RHom (X, LAq(E)).

Since LA, (X) € Dy (R)a-com, it follows from Proposition 6.2(2) that
RHompg(7%,LA4(E)) is an isomorphism,

so is RHompg(RI4(R) ®% 7%, E) = Homgr(RT(R) ®% 7%, E). But E is faith-
ful injective, so R[y(R) ®% 7% is an isomorphism, and hence RI'4(7%) is an
isomorphism.
(3) This is immediate from the idempotence of the functors RI'y and LA,.
(4) By (1), there are functorial isomorphisms

X 2 LAL(X) 2 LALRT (X)) for X € Dy (R)g-com-
By (2), there are functorial isomorphisms
X = RING(X) 2 RIG(LAG(X)) for X € DN (R)(a)-tor-

These isomorphisms yield the desired equivalence. [l

Remark 6.4. Let a be a weakly proregular ideal of R. For any X,Y € Dy (R),
one has that the morphisms

RHompg (R4 (7%),1

RHomp (R4 (X),RT4(Y)) ) RHomp(RI'4(LAG(X)), R, (Y))

adjunction

RHOHIR(LAa (X)7 LACI(RFCI(Y)))

RHompg(1,LAq(0%))

RHom g (LAq(X), LAa(Y))

are isomorphisms in Dy (R).

7. Invariant

In this section, we prove that over a commutative Noetherian ring, via Koszul
cohomology, via RHom cohomology (resp. ® cohomology) and via local coho-
mology (resp. derived completion), all yield the same invariant.

Lemma 7.1. Let € = x1,...,x4 be a sequence of R and X an N-complex. For
t=1,...,N —1, one has (x)H(z; X) = 0 = (2)H;(Homp(K*(z; R); X)).
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Proof. For each x;, the morphism of N-complexes K*(z;; R) — K*(z;; R) given
by multiplication by x; can be factored as follows:

K*(z;;R): 0—=R R R R—>R—>0
DY(R): 0—=R R R M M—>0
K*(x;;R): 0—=R R R R—>R—>0.

Thus multiplication by z; is null-homotopic on K*(z;; R), so the same hold
for K*(x; R) ®g X and Hompg(K*®(x; R); X). Therefore, z;H:(x; X) = 0 =

z;Hy(Hompg(K*(x; R); X)) for each z;, and hence for € = x4, ..., 24, as desired.
O
Lemma 7.2. Let x = x1,...,24 be a sequence of R, a the ideal generated by

x, and let X be an N-complex. Fort=1,...,N — 1, one has
Homp(K*(z; R), X) = Rl y(Hompg(K*(x; R), X)).
Proof. By the definition of a-torsion functor, we have the following isomor-
phisms
RIq(Homp(K*(x; R), X)) = li_n;RHomR(R/as,HomR(K'(w; R), X))
= limRHompg (R/a® @r K*(z; R), X)
= Homp(K*(x; R), limRHompg(R/a’, X))
> Homp(K* (z; R), RT'(X))
>~ Homg(K*(z; R), X),
where the fifth one is by K*(z; R) € Dy (R)qg-tor and Proposition 6.2(1). O
Lemma 7.3. Let x be an element in R. For i € Z and a fized t, one has
H}(Homp(K (x; R), X)) = 0 implies Hi(Homp(K (2*), X)) = 0 for s > 0.

Proof. By octahedral axiom, we have a commutative diagram in Ky (R):

0—— K(z; R) ——K(z; R) ——=0
R——> K(¢%R) SR . ¥R
R—— K(x;R) YR———=Y%R

0 —YK(z;R) =—XK(z; R) —=0,
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where all rows and columns are exact triangles in Ky (R). Applying the functor
RHompg(—, X) to the second column, one gets an exact triangle
Y 'Hompg (K (7; R), X) — Homp(K (z; R), X)
— Hompg(K (2% R), X) — Homp (K (z; R), X),
which implies that Hi(Hompg (K (z%; R), X)) = 0 whenever
Hi(Homp(K (z; R), X)) = 0.
By repeating this process we get the claim. O

For an N-complex X, set

dn—N+2 dn+1

n—N N—N+1
OanX ton Ly X NHL L g N2y ZM(X) = 0,

n CZ" JN+N73 n JN+N72 n+N71 dN+N71
OonX 05 Ch (X)L L orx) S X LR

The next result shows that Koszul cohomology, RHom cohomology and local
cohomology yield the same invariant, which was proved by Foxby and Iyengar
[6] for N =2 (see [6, Theorem 2.1]).

Theorem 7.4. Let a be an ideal of a Noetherian ring R and K the Koszul
N-complex on a sequence of n generators for a. For any X € Dy(R) and a
fixed t, one has

inf{¢ € Z|H{(RHomp(R/a, X)) # 0} = inf{¢ € Z|Hj ,(X) # 0}
= inf{¢ € Z|H{(Homp(K, X)) # 0}.
Proof. Denote the three numbers in question a, b, ¢, respectively.

For an R/a-module T, one can set P 2 T be a semi-projective resolution
such that P® =0 for all i > 0 by [19, Proposition 3.4]. Hence

RHompg(7T, X) = Homp(P, X)
= HOIIlR/a(P7 RHomR(R/a, X))
= Homp/o(P,03q.(RHomg(R/a, X))),

where the last isomorphism is by the dual of [10, Lemma 3.9]. For n < a and
i € Z, one of the inequalities ¢ > 0 or n + 4 < a holds, so Hompg(P, X)" =
[1,cz Homg(P?, X"**) = 0. So

@) HY(RHomp(T, X)) = 0 for £ < a.

Apply the functor RHompg(—, X) to the exact triangle a®/a**!t — R/a*t!t —
R/a® — Ya®/a*T1 in Dy(A) yields the long exact sequence

.- = HY{(RHompg(R/a*, X)) — H(RHompg(R/a*t!, X))
— HY(RHomp(a®/a*T!, X)) — - .
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Then (1) implies that Hf (RHompg(a®/a**1, X)) = 0 for ¢ < a. By the induction
hypothesis and the long exact sequence above, we get that

H{(RHomp(R/a**!, X)) =0 for £ < a and s > 0.
Hence HY(RI'4(X)) = 0 for £ < a. On the other hand, let X = I be a semi-

injective resolution. Then the inverse system of epimorphisms --- — R/a3 —»
R/a%? - R/a induces a direct system of monomorphisms
Homp(R/a,I) — Hompg(R/a* I) — Hompg(R/a®, 1) — - - - .
So HY{(RHomp(R/a, X)) = 0 for £ < b. This shows that a = b.
By Lemma 7.2 and construction of K, one has that
Homp (K, X) ~ Rl (Hompg(K, X)) ~ Homg(K, R, (X)).

Hence we get Hf (Hompg (K, X)) = 0 for £ < b. On the other hand, one has that
H{ ,(X) =0 for £ < ¢ by Lemma 7.3. This shows the equality b = c. O

The next result shows that Koszul cohomology, ® cohomology and derived
completion yield the same invariant, which was proved by Foxby and Iyengar
[6] for N =2 (see [6, Theorem 4.1]).

Theorem 7.5. Let a be an ideal of a Noetherian ring R and K the Koszul
N-complex on a sequence of n generators for a. For any X € Dy(R) and a
fized t, one has
sup{(|H;(R/a ®F X) # 0} = sup{¢ | H;(LAq (X)) # 0}
= sup{¢| H{ (K ®r X) # 0}.
Proof. Denote the three numbers in question a, b, ¢, respectively.

Let P = X be a semi-projective resolution. Then the inverse system of
epimorphisms --- — R/a® - R/a? — R/a induces an inverse system of epi-
morphisms

= R/a®>@r P — R/a*>®@p P - R/a®g P.
So H{(R/a®% X) = 0 for £ > b. To the opposite inequality, note that T®@% X =
T®I;%/GR/a®I;%X for any R/a-module T'. By analogy with the proof of Theorem
7.4, one has

(1) HY(T % X) =0 for £ > a.

Apply — ®% X to the exact triangle a®/a*t! — R/a**! — R/a® — Ya®/a*t!
in Dy (R) yields the following long exact sequence

-+ = H{(a’/a*T @ X) = H{(R/a""! @} X) — H{(R/a® @ X) — -+ .

Then (f) yields that H{(a®/a**! ®% X) = 0 for ¢ > a. By the induction
hypothesis and the long exact sequence above, we get that

HY(R/a*™ @% X) =0 for £ > a and s > 0.
This implies that a = b.
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Let E be a faithful injective R-module. We have the following equivalences:
H{(K ®@r X)=0 for {>a <= Hy' ,(Homg(K,Homg(X, E)))=0 for {>a
— Hy' ,(RHomp(R/a, Homp(X, E)))=0 for £>a
— HY(R/a®r X)=0 for £>a,

where the third equivalence is by Theorem 7.4. This shows the equality a =
c. (]
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