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GREEN’S ADDITIVE COMPLEMENT PROBLEM

FOR k-TH POWERS

Yuchen Ding and Li-Yuan Wang

Abstract. Let k > 2 be an integer, Sk = {1k, 2k, 3k, . . .} and B =

{b1, b2, b3, . . .} be an additive complement of Sk, which means all suffi-
ciently large integers can be written as the sum of an element of Sk and

an element of B. In this paper we prove that

lim sup
n→∞

Γ
(
2− 1

k

) k
k−1 Γ

(
1 + 1

k

) k
k−1 n

k
k−1 − bn

n
>

k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) ,

where Γ(·) is Euler’s Gamma function.

1. Introduction

Additive complements are popular topics in combinatorial number theory.
For any two infinite sequences of nonnegative integers A and B, if their sum,
which is defined to be

A+B :=
{
a+ b | a ∈ A, b ∈ B

}
contains all sufficiently large integers, then we say that they are additive com-
plements and B is an additive complement of A. For any set D ⊆ N, let D(x)
be the number of elements of D not exceeding x. Let S = {12, 22, 32, . . .}
be the set of all squares. Given a positive integer N , let BN be a subset of
{0, 1, 2, . . . , N} such that every integer n between 1 and N can be written as
the sum of two elements of S and BN (in this case we say that BN is an ad-
ditive complement of S up to N). Let θN be the least cardinality of the above

BN . On the one hand, it is not difficult to see that
{

0, 1, 2, 3, . . . , 2[
√
N ] + 1

}
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is such an additive complement of S up to N . So

lim sup
N→∞

θN√
N

6 2.

On the other hand, it is obvious that θN ·
[√
N
]
> N , which implies

lim inf
N→∞

θN√
N

> 1.

Erdős [9] asked whether lim infN→∞
θN√
N

is strictly larger than 1. This question

was answered affirmatively by Moser [11] who showed that

lim inf
N→∞

θN√
N

> 1.06.

This result has been improved by many authors (see [1–4, 6, 8, 10, 12, 13]). Up
to now the best known result is

lim inf
N→∞

θN√
N

>
4

π
,

which was obtained by Cilleruelo [6], Habsieger [10] and Balusubramanian and
Ramana [3].

The above results can be generalized to k-th powers, where k > 2 is an
integer. Let Sk = {1k, 2k, 3k, . . .}. Given any positive integer N , let Bk

N ⊆
{0, 1, 2, 3, . . . , N} be an additive complement of Sk up to N and θkN be the least
cardinal number of such Bk

N . It (see for example [6]) has been proved that

lim inf
N→∞

θkN

N
k−1
k

>
1

Γ(2− 1
k )Γ(1 + 1

k )
,

where Γ(·) is Euler’s Gamma function.
Let’s define

R(n) := #
{

(l, b) | n = l2 + b, l ∈ N, b ∈ B
}
.

Then it is clear that R(n) > 1 for sufficiently large n if B is an additive
complement of the squares. Ben Green noticed that if B = {bn}∞n=1 satisfies

bn = π2

16n
2 + o(n2), i.e.,

B(N) =
4

π

√
N + o(

√
N),

then

lim
N→∞

1

N

N∑
n=1

R(n) = 1.

He [5] was curious that whether there exists an additive complement B =

{bn}∞n=1 of S such that bn = π2

16n
2 +o(n2). Chen and Fang [5] investigated this
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problem and proved that if B = {bn}∞n=1 is an additive complement of S, then

lim sup
n→∞

π2

16n
2 − bn

n1/2 log n
>

√
2

π

1

log 4
.

They further conjectured that

lim sup
n→∞

π2

16n
2 − bn

n1/2 log n
= +∞.

Recently, this conjecture was confirmed by the first author [7]. In fact, he
proved the following stronger result:

(1.1) lim sup
n→∞

π2

16n
2 − bn
n

>
π

4
.

Based on the above rich literature, we propose to study the additive com-
plement of the k-th powers in Ben Green’s manner, where k > 2 is an integer.
Inspired by Ben Green’s observation, we noticed that if B = {bn}∞n=1 ⊆ N with

bn = (1 + o(1))Γ

(
2− 1

k

) k
k−1

Γ

(
1 +

1

k

) k
k−1

n
k

k−1 ,

i.e.,

B(N) = (1 + o(1))Γ

(
2− 1

k

)−1
Γ

(
1 +

1

k

)−1
N

k−1
k ,

then

lim
N→∞

1

N

N∑
n=1

Rk(n) = 1,

where

Rk(n) := #
{

(l, b) | n = lk + b, l ∈ N, b ∈ B
}
.

This led us to study what can we say about the set B if it is an additive
complement of Sk. As a generalization of (1.1), in this paper we obtain the
following theorem, the proof of which will be given in the next section.

Theorem 1.1. Given any positive integer k > 2, if B = {b1, b2, b3, . . .} is an
additive complement of Sk, then

(1.2) lim sup
n→∞

Γ
(
2− 1

k

) k
k−1 Γ

(
1 + 1

k

) k
k−1 n

k
k−1 − bn

n
>

k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) ,
where Γ(·) is Euler’s Gamma function.

Remark 1.2. Note that if k = 2, then

Γ

(
2− 1

k

) k
k−1

Γ

(
1 +

1

k

) k
k−1

=

(
1

2
· Γ
(

1

2

))4

=
π2

16
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and
k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) =
Γ
(
3
2

)2
Γ(1)

=

(
1

2
· Γ
(

1

2

))2

=
π

4
.

Hence for k = 2, the inequality (1.2) in the theorem becomes exactly (1.1).
That means Theorem 1.1 is a natural generalization of the former result of the
first author [7].

Next we give a simple example for the case k = 3.

Example 1.3. If k = 3, then one can calculate that

k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) =
3

4
·

Γ
(
5
3

)2
Γ
(
4
3

) ≈ 0.684463.

Thus by our theorem, if B = {b1, b2, b3, . . .} is an additive complement of
{13, 23, 33, . . .}, then

lim sup
n→∞

Γ
(
5
3

) 3
2 Γ
(
4
3

) 3
2 n

3
2 − bn

n
> 0.684463.

We conclude this section by posing the following conjecture.

Conjecture 1.4. Given any positive integer k > 2, if B = {b1, b2, b3, . . .} is
an additive complement of Sk, then

lim sup
n→∞

Γ
(
2− 1

k

) k
k−1 Γ

(
1 + 1

k

) k
k−1 n

k
k−1 − bn

n
= +∞.

2. The proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proofs of the theorem need to
be divided into two cases k = 2 and k > 2. If k = 2, the theorem is reduced to

lim sup
n→∞

π2

16n
2 − bn
n

>
π

4
.

This is exactly (1.1), which has already been proved in [7]. We simply omit the
proof here.

From now on, let’s assume k > 2. For this case, the requirement of k > 2
originates from the meaninglessness of Γ(0) which shall be encountered in the
derivation of (2.13) if k = 2 (see the proof below). In fact, the proof of k > 2 is
a refinement of the former one with the help of Γ function. Perhaps the most
important ingredient for k > 2 is the conversion from the bound of bn to that
of B(n) by using the famous Newton’s binomial theorem. And as we can see
in [7] the conversion for k = 2 is somewhat trivial.

Before the beginning of our proof, we first state some facts on gamma func-
tion Γ(·) and beta function B(· , ·). These two functions are defined as follows:

Γ(s) =

∫ +∞

0

xs−1e−xdx, s > 0,
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B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx, p > 0, q > 0.

Recall that

Γ(s+ 1) = sΓ(s)

for any s > 0, by which we have Γ(n + 1) = n! for any n ∈ N. We also have
the following relation between these two functions:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(p > 0, q > 0).

Now we begin to prove the case for k > 2. Let

ak = Γ

(
2− 1

k

) k
k−1

Γ

(
1 +

1

k

) k
k−1

and βk be the right side of (1.2), i.e.,

βk =
k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) .
Assume that the theorem doesn’t hold. Then there exists a real number αk
such that

lim sup
n→∞

akn
k

k−1 − bn
n

= αk < βk.

Let δk = (βk − αk)/2. Then there exists an integer n1 such that

akn
k

k−1 − bn
n

< βk − δk,

i.e.,

(2.3) ak · n
k

k−1 − (βk − δk)n < bn

for all n > n1.
We next show that there exists an integer n2 such that

n < ak · (ck · n
k−1
k + gk · n

k−2
k )

k
k−1 − (βk − δk)(ck · n

k−1
k + gk · n

k−2
k )

for all n > n2, where

ck =
1

Γ(2− 1
k )Γ(1 + 1

k )
and gk =

k − 1

k

(
βk −

δk
2

)
c2k.

In fact, by the Newton’s binomial theorem we have

ak · (ck · n
k−1
k + gk · n

k−2
k )

k
k−1 = ak(ck · n

k−1
k )

k
k−1

(
1 +

gk
ck
· n− 1

k

) k
k−1

= n

(
1 +

gk
ck
· n− 1

k

) k
k−1
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= n

(
1 +

k

k − 1
· gk
ck
· n− 1

k +O(n−2/k)

)
= n+

k

k − 1
· gk
ck
· n1− 1

k +O(n
k−2
k )

= n+

(
βk −

δk
2

)
ck · n1−

1
k +O(n

k−2
k )

(note that ak · c
k

k−1

k = 1).
Hence there exists an integer n2 such that for all n > n2 we have

ak · (ck · n
k−1
k + gk · n

k−2
k )

k
k−1 > n+ (βk − δk) ck · n1−

1
k + (βk − δk) gk · n

k−2
k ,

i.e.,

(2.4) n < ak · (ck · n
k−1
k + gk · n

k−2
k )

k
k−1 − (βk − δk)(ck · n

k−1
k + gk · n

k−2
k ).

Now let’s define

(2.5) f(λ) := ak · λ
k

k−1 − (βk − δk)λ.

Obviously there is an integer n3 such that f(λ) is strictly increasing in [n3,∞).
Take M = max{bn1 , n2, bn3}. Let n > M be any integer. Let B(n) = t, i.e., t
is the largest integer such that

bt 6 n.

In view of (2.4) and (2.5) we have

bt 6 n < f(ck · n
k−1
k + gk · n

k−2
k ).

Since n > M > max{bn1
, bn3
} we have t > max{n1, n3}. Recall that t > n1

implies f(t) < bt from (2.3) and (2.5). Thus we have

f(t) < bt 6 n < f(ck · n
k−1
k + gk · n

k−2
k ).

Note that f(λ) is strictly increasing on [n3,∞), so we have

(2.6) B(n) = t < ck · n
k−1
k + gk · n

k−2
k

for all n > M .
As in the introduction, let

Rk(n) = #
{

(l, b) | n = lk + b, l ∈ N, b ∈ B
}

be the representation function of n. Then in view of (2.6) we deduce that

N∑
n=1

R(n) =

N∑
n=1

∑
n=lk+b
b∈B

1

=
∑

nk+b6N
b∈B

1
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=
∑

n6N1/k

∑
b6N−nk

b∈B

1

=
∑

n6N1/k

B(N − nk)

6
∑

n6N1/k

(
ck · (N − nk)

k−1
k + gk · (N − nk)

k−2
k

)
+O(1)

= ck
∑

n6N1/k

(N − nk)
k−1
k + gk

∑
n6N1/k

(N − nk)
k−2
k +O(1).(2.7)

Now we estimate the first two parts of the above equation. Suppose that N =

Kk for some positive integer K. For the first part we let g(t) = (N − tk)
k−1
k ,

then by Euler-Maclaurin formula, we have∑
n6N1/k

(N − nk)
k−1
k =

∑
0<n6N1/k

g(n)

=

∫ N1/k

0

g(t)dt−
(
g(N1/k)− g(0)

)(
− 1

2

)
+

∫ N1/k

0

(
{t} − 1

2

)
g′(t)dt

=

∫ N1/k

0

g(t)dt− 1

2
N1− 1

k +

∫ N1/k

0

(
{t} − 1

2

)
g′(t)dt.(2.8)

Now we integrate the first term by substitution. Letting tk = Nx, then
t = N

1
k x

1
k . Hence ∫ N1/k

0

g(t)d =

∫ N1/k

0

(N − tk)1−
1
k dt

=
N

k

∫ 1

0

x
1
k−1(1− x)1−

1
k dx

=
N

k
B

(
1

k
, 2− 1

k

)
=
N

k

Γ( 1
k )Γ(2− 1

k )

Γ(2)

= Γ

(
1 +

1

k

)
Γ

(
2− 1

k

)
N.(2.9)

We next show that ∫ N1/k

0

(
{t} − 1

2

)
g′(t)dt 6 0(2.10)
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for N = Kk. Since g′(t) = (1− k)tk−1(N − tk)−
1
k , we have∫ N1/k

0

(
{t} − 1

2

)
g′(t)dt =

∫ N1/k

0

(
{t} − 1

2

)
(1− k)tk−1(N − tk)−

1
k dt

= (1− k)

K∑
i=1

∫ i

i−1

(
{t} − 1

2

)
tk−1(N − tk)−

1
k dt.(2.11)

For each i = 1, 2, . . . ,K we let t = i− 1
2 + µ, then {t} − 1

2 = µ. Hence∫ i

i−1

(
{t} − 1

2

)
tk−1(N − tk)−

1
k dµ

=

∫ 1
2

− 1
2

µ ·
(
i− 1

2
+ µ

)k−1(
N −

(
i− 1

2
+ µ

)k)− 1
k

dµ.

Now for any i = 1, 2, . . . ,K we define

hi(µ) :=

(
i− 1

2
+ µ

)k−1(
N −

(
i− 1

2
+ µ

)k)− 1
k

.

It is easy to see that hi(µ) is monotonically increasing on [− 1
2 ,

1
2 ] for any i =

1, 2, . . . ,K. Therefore∫ 1
2

− 1
2

µ ·
(
i− 1

2
+ µ

)k−1(
N −

(
i− 1

2
+ µ

)k)− 1
k

dµ

=

∫ 1
2

0

µ · hi(µ)dµ+

∫ 0

− 1
2

µ · hi(µ)dµ

=

∫ 1
2

0

µ ·
[
hi(µ)− hi(−µ)

]
dµ > 0.

Now (2.10) follows from the above inequality and (2.11). Combining (2.8),
(2.9) and (2.10) we obtain that∑

n6N1/k

(N − nk)
k−1
k 6 Γ

(
1 +

1

k

)
Γ

(
2− 1

k

)
N − 1

2
N1− 1

k .

Thus

ck
∑

n6N1/k

(N − nk)
k−1
k 6 ckΓ

(
1 +

1

k

)
Γ

(
2− 1

k

)
·N − 1

2
ckN

1− 1
k

= N − 1

2
ckN

1− 1
k .(2.12)

Now we estimate the second part of (2.7). Let’s define

ω(t) := (N − tk)
k−2
k ,
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then

ω′(t) = (2− k)tk−1(N − tk)−
2
k .

Similarly, by Euler-MacLaurin formula we deduce that∑
n6N1/k

(N − nk)
k−2
k =

∑
0<n6N1/k

ω(n)

=

∫ N1/k

0

ω(t)dt−
(
ω(N1/k)− ω(0)

)(
− 1

2

)
+

∫ N1/k

0

(
{t} − 1

2

)
ω′(t)dt

=
1

k

Γ( 1
k )Γ(2− 2

k )

Γ(2− 1
k )

N1− 1
k − 1

2
N1− 2

k

+

∫ N1/k

0

(
{t} − 1

2

)
ω′(t)dt

=
Γ(1 + 1

k )Γ(2− 2
k )

Γ(2− 1
k )

N1− 1
k − 1

2
N1− 2

k

+

∫ N1/k

0

(
{t} − 1

2

)
ω′(t)dt.(2.13)

By similar arguments one can verify that∫ N1/k

0

(
{t} − 1

2

)
ω′(t)dt 6 0

and so we have∑
n6N1/k

(N − nk)
k−2
k 6

Γ(1 + 1
k )Γ(2− 2

k )

Γ(2− 1
k )

N1− 1
k − 1

2
N1− 2

k .

Thus

gk
∑

n6N1/k

(N − nk)
k−2
k 6 gk

Γ(1 + 1
k )Γ(2− 2

k )

Γ(2− 1
k )

·N1− 1
k − 1

2
gk ·N1− 2

k .(2.14)

Combining (2.7), (2.12) and (2.14) gives

N∑
n=1

Rk(n) 6 N −
(

1

2
ck − gk

k − 2

k

Γ(1 + 1
k )Γ(1− 2

k )

Γ(2− 1
k )

)
N1− 1

k +O(N1− 2
k )

(2.15)

for k-th power integers N = Kk.
Now we show that

1

2
ck > gk

k − 2

k

Γ(1 + 1
k )Γ(1− 2

k )

Γ(2− 1
k )

.
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In fact, noticing that

ck =
1

Γ(2− 1
k )Γ(1 + 1

k )
, gk =

k − 1

k

(
βk −

δk
2

)
c2k

and

βk =
k

2(k − 1)

Γ
(
2− 1

k

)2
Γ
(
2− 2

k

) ,
we obtain that

gk
k − 2

k

Γ(1 + 1
k )Γ(1− 2

k )

Γ(2− 1
k )

=
k − 2

k

k − 1

k

(
βk −

1

2
δk

)
c2k

Γ(1 + 1
k )Γ(1− 2

k )

Γ(2− 1
k )

<
k − 2

k

k − 1

k
βkc

2
k

Γ(1 + 1
k )Γ(1− 2

k )

Γ(2− 1
k )

=
1

2
ck.

On the other hand, B is an additive complement of Sk, which means that all
sufficiently large integer can be represented as the sum of two elements of B
and Sk. So there exists an integer n4 > 0 such that Rk(n) > 1 for all n > n4,
which implies

N∑
n=1

Rk(n) > N − n4

for all N > n4. This contradicts with (2.15) for sufficiently large N = Kk,
which completes the proof our theorem.
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