DOI QR코드

DOI QR Code

Validation and comparison of volume measurements using 1 multidetector computed tomography and 5 cone-beam computed tomography protocols: An in vitro study

  • Received : 2022.06.06
  • Accepted : 2022.08.27
  • Published : 2022.12.31

Abstract

Purpose: The purpose of this study was to compare volume measurements obtained using 2 image software packages on Digital Imaging and Communications in Medicine (DICOM) images acquired from 1 multidetector computed tomography and 5 cone-beam computed tomography devices, using different protocols for physical volume measurements. Materials and Methods: Four pieces of bovine leg were prepared. Marrow was removed from 3 pieces, leaving cortical bone exposed. The resulting space of 1 piece was filled with water, another was filled with propylene glycol, and the third was left unfilled. The marrow in the fourth sample was left fully intact. Volume measurements were obtained after importing DICOM images into the Dolphin Imaging 11.95 and ITK-SNAP software programs. Data were analyzed using 3-way analysis of variance with a generalized linear model to determine the effects of voxel size, software, and content on percentage mean volume differences between tomographic protocols. A significance level of 0.05 was used. Results: The intraclass correlation coefficients for intraobserver and interobserver reliability were, respectively, 0.915 and 0.764 for the Dolphin software and 0.894 and 0.766 for the ITK-SNAP software. Three sources of statistically significant variation were identified: the interaction between software and content (P=0.001), the main effect of content (P=0.014), and the main effect of software (P=0.001). Voxel size was not associated with statistically significant differences in volume measurements. Conclusion: Both content and software influenced the accuracy of volume measurements, especially when the content had gray values similar to those of the adjacent tissues.

Keywords

Acknowledgement

All institutional and national guidelines for the care and use of laboratory animals were followed.

References

  1. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997; 34: 111-6. https://doi.org/10.1597/1545-1569_1997_034_0111_cotroc_2.3.co_2
  2. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg 2006; 17: 314-25. https://doi.org/10.1097/00001665-200603000-00019
  3. Togashi K, Kitaura H, Yonetsu K, Yoshida N, Nakamura T. Three-dimensional cephalometry using helical computer tomography: measurement error caused by head inclination. Angle Orthod 2002; 72: 513-20.
  4. Swennen GR, Schutyser F. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2006; 130: 410-6. https://doi.org/10.1016/j.ajodo.2005.11.035
  5. Araki K, Maki K, Seki K, Sakamaki K, Harata Y, Sakaino R, et al. Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties. Dentomaxillofac Radiol. 2004; 33: 51-9. https://doi.org/10.1259/dmfr/54013049
  6. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8: 1558-64. https://doi.org/10.1007/s003300050586
  7. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol 2009; 30: 1285-92. https://doi.org/10.3174/ajnr.A1654
  8. Hashimoto K, Arai Y, Iwai K, Araki M, Kawashima S, Terakado M. A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 95: 371-7. https://doi.org/10.1067/moe.2003.120
  9. Alsufyani NA, Noga ML, Witmans M, Cheng I, El-Hakim H, Major PW. Using cone beam CT to assess the upper airway after surgery in children with sleep disordered breathing symptoms and maxillary-mandibular disproportions: a clinical pilot. J Otolaryngol Head Neck Surg 2017; 46: 31.
  10. Wen X, Wang X, Qin S, Franchi L, Gu Y. Three-dimensional analysis of upper airway morphology in skeletal Class III patients with and without mandibular asymmetry. Angle Orthod 2017; 87: 526-33.
  11. Gupta JV, Makhija PG, Gupta KC. Does a correlation exist between nasal airway volume and craniofacial morphology: a cone beam computed tomography study. Indian J Dent Res 2016; 27: 359-63. https://doi.org/10.4103/0970-9290.191882
  12. Shahidi S, Momeni Danaie S, Omidi M. Comparison of the pharyngeal airway volume between non-syndromic unilateral cleft palate and normal individuals using cone beam computed tomography. J Dent(Shiraz) 2016; 17: 268-75.
  13. Farzal Z, Walsh J, Lopes de Rezende Barbosa G, Zdanski CJ, Davis SD, Superfine R, et al. Volumetric nasal cavity analysis in children with unilateral and bilateral cleft lip and palate. Laryngoscope 2016; 126: 1475-80. https://doi.org/10.1002/lary.25543
  14. Kamburoglu K, Yilmaz F, Gulsahi K, Gulen O, Gulsahi A. Change in periapical lesion and adjacent mucosal thickening dimensions one year after endodontic treatment: volumetric cone-beam computed tomography assessment. J Endod 2017; 43: 218-24. https://doi.org/10.1016/j.joen.2016.10.023
  15. Villoria EM, Lenzi AR, Soares RV, Souki BQ, Sigurdsson A, Marques AP, et al. Post-processing open-source software for the CBCT monitoring of periapical lesions healing following endodontic treatment: technical report of two cases. Dentomaxillofac Radiol 2017; 46: 20160293.
  16. de Rezende Barbosa GL, Wood JS, Pimenta LA, Maria de Almeida S, Tyndall DA. Comparison of different methods to assess alveolar cleft defects in cone beam CT images. Dentomaxillofac Radiol 2016; 45: 20150332.
  17. Zhou WN, Xu YB, Jiang HB, Wan L, Du YF. Accurate evaluation of cone-beam computed tomography to volumetrically assess bone grafting in alveolar cleft patients. J Craniofac Surg 2015; 26: e535-9. https://doi.org/10.1097/SCS.0000000000002034
  18. Lenza MG, Lenza MM, Dalstra M, Melsen B, Cattaneo PM. An analysis of different approaches to the assessment of upper airway morphology: a CBCT study. Orthod Craniofac Res 2010; 13: 96-105. https://doi.org/10.1111/j.1601-6343.2010.01482.x
  19. Feng X, Li G, Qu Z, Liu L, Nasstrom K, Shi XQ. Comparative analysis of upper airway volume with lateral cephalograms and cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2015; 147: 197-204. https://doi.org/10.1016/j.ajodo.2014.10.025
  20. Kasaven CP, Ivekovic S, McIntyre GT, Gillgrass T, Thomson DA, Menhinick A, et al. Validation of the volumetric measurement of a simulated maxillary alveolar bone defect using cone-beam computed tomography. Cleft Palate Craniofacial J 2013; 50: 115-20. https://doi.org/10.1597/12-161
  21. Kamburoglu K, Kursun S, Kilic C, Ozen T. Accuracy of virtual models in the assessment of maxillary defects. Imaging Sci Dent 2015; 45: 23-9.
  22. Albuquerque MA, Gaia BF, Cavalcanti MG. Oral cleft volumetric assessment by 3D multislice computed tomographic images. Int J Oral Maxillofac Surg 2011; 40: 1280-8. https://doi.org/10.1016/j.ijom.2011.05.015
  23. Amirlak B, Tang CJ, Becker D, Palomo JM, Gosain AK. Volumetric analysis of simulated alveolar cleft defects and bone grafts using cone beam computed tomography. Plast Reconstr Surg 2013; 131: 854-9. https://doi.org/10.1097/PRS.0b013e3182818e4f
  24. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-28. https://doi.org/10.1016/j.neuroimage.2006.01.015
  25. Yushkevich PA, Pashchinskiy A, Oguz I, Mohan S, Schmitt JE, Stein JM, et al. User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics 2019; 17: 83-102. https://doi.org/10.1007/s12021-018-9385-x
  26. Liu Y, Olszewski R, Alexandroni ES, Enciso R, Xu T, Mah JK. The validity of in vivo tooth volume determinations from cone-beam computed tomography. Angle Orthod 2010; 80: 160-6. https://doi.org/10.2319/121608-639.1
  27. Whyms BJ, Vorperian HK, Gentry LR, Schimek EM, Bersu ET, Chung MK. The effect of computed tomographic scanner parameters and 3-dimensional volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: 682-91. https://doi.org/10.1016/j.oooo.2013.02.008
  28. Liang YH, Jiang L, Gao XJ, Shemesh H, Wesselink PR, Wu MK. Detection and measurement of artificial periapical lesions by cone-beam computed tomography. Int Endod J 2014; 47: 332-8. https://doi.org/10.1111/iej.12148
  29. Goo JM, Tongdee T, Tongdee R, Yeo K, Hildebolt CF, Bae KT. Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy. Radiology 2005; 235: 850-6. https://doi.org/10.1148/radiol.2353040737
  30. Su D, Feng L, Jiang Y, Wang Y. Effect of scanning and reconstruction parameters on three dimensional volume and CT value measurement of pulmonary nodules: a phantom study. Zhongguo Fei Ai Za Zhi 2017; 20: 562-7.
  31. Way TW, Chan HP, Goodsitt MM, Sahiner B, Hadjiiski LM, Zhou C, et al. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Phys Med Biol 2008; 53: 1295-312. https://doi.org/10.1088/0031-9155/53/5/009
  32. Prionas ND, Ray S, Boone JM. Volume assessment accuracy in computed tomography: a phantom study. J Appl Clin Med Phys 2010; 11: 3037.
  33. Marten K, Dullin C, Machann W, Schmid JS, DAS M, Hermann KP, et al. Comparison of flat-panel-detector-based CT and multidetector-row CT in automated volumetry of pulmonary nodules using an anthropomorphic chest phantom. Br J Radiol 2009; 82: 716-23.
  34. Kobayashi Y, Satoh K, Kanamori D, Mizutani H, Fujii N, Aizawa T, et al. Evaluating the exposure dose of 320-row area detector computed tomography and its reliability in the measurement of bone defect in alveolar cleft. J Oral Maxillofac Surg Med Pathol 2017; 29: 350-7. https://doi.org/10.1016/j.ajoms.2017.03.006
  35. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 2006; 35: 410-6. https://doi.org/10.1259/dmfr/20987648
  36. Bayram M, Kayipmaz S, Sezgin OS, Kucuk M. Volumetric analysis of the mandibular condyle using cone beam computed tomography. Eur J Radiol 2012; 81: 1812-6. https://doi.org/10.1016/j.ejrad.2011.04.070
  37. Haverkamp K, Harder LK, Kuhnt NSM, Lupke M, Nolte I, Wefstaedt P. Validation of canine prostate volumetric measurements in computed tomography determined by the slice addition technique using the Amira program. BMC Vet Res 2019; 15: 49.
  38. Fabel M, Biederer J, Jochens A, Bornemann L, Soza G, Heller M, et al. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study. Eur J Radiol 2011; 80: e451-7. https://doi.org/10.1016/j.ejrad.2010.10.019
  39. Sang YH, Hu HC, Lu SH, Wu YW, Li WR, Tang ZH. Accuracy assessment of three-dimensional surface reconstructions of in vivo teeth from cone-beam computed tomography. Chin Med J(Engl) 2016; 129: 1464-70.