DOI QR코드

DOI QR Code

Differential Expression of microRNAs Following Electroacupuncture Applied to ST36 and GB34 in Rat Models of Chronic Pain

족삼리 양릉천 전침 자극 후 흰쥐 통증 모델에서 microRNA의 차등 발현

  • So-Hee, Kim (Korean Medicine Research Center for Healthy Aging, Pusan National University) ;
  • Vishnumolakala, Sindhuri (Department of Korean Medical Science, School of Korean Medicine, Pusan National University) ;
  • Sungtae, Koo (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
  • Received : 2022.11.17
  • Accepted : 2022.11.30
  • Published : 2022.12.27

Abstract

Objectives : Some acupoints are commonly utilized to treat a variety of diseases. The acupoints appear to have a wide range of effects caused by several mechanisms. The purpose of this study is to investigate into the potential role of microRNAs (miRNAs) in the multipotent effects of individual acupoint stimulation. Methods : We examined the miRNA expressions in the dorsal root ganglia (DRG) of neuropathic or inflammatory pain rats following ST36 and GB34 electroacupuncture (EA) stimulation. Neuropathic pain was induced by L5 spinal nerve ligation. Inflammatory pain was induced by knee joint injection of Complete Freund's adjuvant (CFA). EA was given under gaseous anesthesia with the same parameters (1mA, 2Hz, 30 min) in 5 consecutive days. Pain behaviors and miRNA expressions were analyzed. Results : In rats with neuropathic and inflammatory pain, EA treatments significantly enhanced the paw withdrawal threshold and weight-bearing force. After nerve injury, 36 miRNAs were upregulated in the DRG of neuropathic rats, while EA downregulated 10 of them. Furthermore, 14 miRNAs were downregulated following nerve damage, while one was increased by EA. 15 miRNAs were increased in the DRG of inflammatory rats following CFA injection, while 5 were downregulated by EA. Furthermore, 17 miRNAs were downregulated following CFA injection, while 7 were increased by EA. The miRNAs rno-miR-335, rno-miR-381-5p, rno-miR-1306-3p, and rno-miR-1839-3p were regulated by EA in both models. Conclusions : In two pain models, EA applied to ST36 and GB34 regulated miRNA expression differently. There appeared to be both acupoint-specific and non-specific miRNAs, and miRNA regulation of differential protein expression may modulate a variety of EA mechanisms.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Scharf HP, Mansmann U, Streitberger K, Witte S, Kramer J, Maier C, et al. Acupuncture and knee osteoarthritis: a three-armed randomized trial. Ann Intern Med. 2006 ; 145(1) : 12-20. https://doi.org/10.7326/0003-4819-145-1-200607040-00005
  2. Oh JE, Kim SN. Anti-inflammatory effects of acupuncture at ST36 point: a literature review in animal studies. Front Immunol. 2021 ; 12 : 813748. https://doi.org/10.3389/fimmu.2021.813748
  3. Li L, Zhu W, Lin G, Chen C, Tang D, Lin S, et al. Effects of acupuncture in ischemic stroke rehabilitation: a randomized controlled trial. Front Neurol. 2022 ; 13 : 897078. https://doi.org/10.3389/fneur.2022.897078
  4. Meridians and Acupoints Compilation Committee of Korean Medical Colleges. Acupuncture points. Seoul: Jungdam Publishing. 2020 : 245-251.
  5. Meridians and Acupoints Compilation Committee of Korean Medical Colleges. Acupuncture points. Seoul: Jungdam Publishing. 2020 : 346-360.
  6. Wang Z, Yi T, Long M, Gao Y, Cao C, Huang C, et al. Electro-acupuncture at Zusanli Acupoint (ST36) suppresses inflammation in allergic contact dermatitis via triggering local IL-10 production and inhibiting p38 MAPK activation. Inflammation. 2017 ; 40(4) : 1351-64. https://doi.org/10.1007/s10753-017-0578-5
  7. Zhao YX, Yao MJ, Liu Q, Xin JJ, Gao JH, Yu XC. Electroacupuncture treatment attenuates paclitaxel-induced neuropathic pain in rats via inhibiting spinal glia and the TLR4/NF-κB pathway. J Pain Res. 2020 ; 13 : 239-50. https://doi.org/10.2147/JPR.S241101
  8. Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 relieves visceral hypersensitivity via the NGF/TrkA/TRPV1 peripheral afferent pathway in a rodent model of post-inflammation rectal hypersensitivity. J Inflamm Res. 2021 ; 14 : 325-39. https://doi.org/10.2147/JIR.S285146
  9. Li Y, Fang Z, Gu N, Bai F, Ma Y, Dong H, et al. Inhibition of chemokine CX3CL1 in spinal cord mediates the electroacupunctureinduced suppression of inflammatory pain. J Pain Res. 2019 ; 12 : 2663-72. https://doi.org/10.2147/JPR.S205987
  10. Zhao P, Chen X, Han X, Wang Y, Shi Y, Ji J, et al. Involvement of microRNA-155 in the mechanism of electroacupuncture treatment effects on experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2021 ; 97: 107811. https://doi.org/10.1016/j.intimp.2021.107811
  11. Jiang M, Chen X, Zhang L, Liu W, Yu X, Wang Z, et al. Electroacupuncture suppresses glucose metabolism and GLUT-3 expression in medial prefrontal cortical in rats with neuropathic pain. Biol Res. 2021 ; 54(1) : 24. https://doi.org/10.1186/s40659-021-00348-0
  12. Jang JH, Yeom MJ, Ahn S, Oh JY, Ji S, Kim TH, et al. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson's disease. Brain Behav Immun. 2020 ; 89 : 641-55. https://doi.org/10.1016/j.bbi.2020.08.015
  13. Xie LL, Zhao YL, Yang J, Cheng H, Zhong ZD, Liu YR, et al. Electroacupuncture prevents osteoarthritis of high-fat diet-induced obese rats. Biomed Res Int. 2020 ; 2020 : 9380965. https://doi.org/10.1155/2020/9380965
  14. Yeo S, Song J, Lim S. Acupuncture Inhibits the Increase in Alpha-synuclein in substantia nigra in an MPTP- induced parkinsonism mouse model. Adv Exp Med Biol. 2020 ; 1232 : 401-8. https://doi.org/10.1007/978-3-030-34461-0_51
  15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 ; 116(2) : 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  16. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 2010 ; 30(32) : 10860-71. https://doi.org/10.1523/JNEUROSCI.1980-10.2010
  17. Bai G, Ambalavanar R, Wei D, Dessem D. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain. 2007 ; 3 : 15. https://doi.org/10.1186/1744-8069-3-15
  18. Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, et al. Differential expression of microRNAs in mouse pain models. Mol Pain. 2011 ; 7 : 17. https://doi.org/10.1186/1744-8069-7-17
  19. Chung JM, Kim HK, Chung K. Segmental spinal nerve ligation model of neuropathic pain. Methods Mol Med. 2004 ; 99 : 35-45. https://doi.org/10.1385/1-59259-770-X:035
  20. Koo ST, Kim SK, Kim EH, Kim JH, Youn DH, Lee BH, et al. Acupuncture point locations for experimental animal studies in rats and mice. Korean J Acupunct. 2010 ; 27(3) : 67-78.
  21. Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene. 2010 ; 29(15) : 2161-4. https://doi.org/10.1038/onc.2010.59
  22. Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev. 2011 ; 21(4) : 491-7. https://doi.org/10.1016/j.gde.2011.04.008
  23. Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience. 2009 ; 164 (2): 711-23. https://doi.org/10.1016/j.neuroscience.2009.08.033
  24. Sun K, Zhang J, Yang Q, Zhu J, Zhang X, Wu K, et al. MiR-10b-3p alleviates cerebral ischemia/reperfusion injury by targeting Kruppel-like factor 5 (KLF5). Pflugers Arch. 2022 ; 474(3) : 343-53. https://doi.org/10.1007/s00424-021-02645-9
  25. Zheng T, Li Y, Zhang X, Xu J, Luo M. Exosomes derived from miR-212-5p overexpressed human synovial mesenchymal stem cells suppress chondrocyte degeneration and inflammation by targeting ELF3. Front Bioeng Biotechnol. 2022 ; 10 : 816209. https://doi.org/10.3389/fbioe.2022.816209
  26. Sun L, Lu S, Bai M, Xiang L, Li J, Jia C, et al. Integrative microRNA-mRNA analysis of muscle tissues in qianhua mutton merino and small tail han sheep reveals key roles for oar-miR655-3p and oar-miR-381-5p. DNA Cell Biol. 2019 ; 38(5) : 423-35. https://doi.org/10.1089/dna.2018.4408
  27. Liu B, Zheng W, Dai L, Fu S, Shi E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell. 2022 ; 74 : 101678. https://doi.org/10.1016/j.tice.2021.101678
  28. Zhou M, Gao Y, Wang M, Guo X, Li X, Zhu F, et al. MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10. J Cancer. 2021 ; 12(12) : 3726-40. https://doi.org/10.7150/jca.48418
  29. Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S. miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med. 2021 ; 21(2) : 109. https://doi.org/10.3892/etm.2020.9541
  30. Tornero-Esteban P, Rodriguez-Rodriguez L, Abasolo L, Tome M, Lopez-Romero P, Herranz E, et al. Signature of microRNA expression during osteogenic differentiation of bone marrow MSCs reveals a putative role of miR-335-5p in osteoarthritis. BMC Musculoskelet Disord. 2015 ; 16 : 182. https://doi.org/10.1186/s12891-015-0652-9
  31. Lin TB, Lai CY, Hsieh MC, Jiang JL, Cheng JK, Chau YP, et al. Neuropathic allodynia involves spinal Neurexin-1β-dependent Neuroligin-1/Postsynaptic Density-95/NR2B cascade in rats. Anesthesiology. 2015 ; 123(4) : 909-26. https://doi.org/10.1097/ALN.0000000000000809
  32. Nong W, Bao C, Chen Y, Wei Z. miR-212-3p attenuates neuroinflammation of rats with Alzheimer's disease via regulating the SP1/BACE1/NLRP3/Caspase-1 signaling pathway. Bosn J Basic Med Sci. 2022 ; 22(4) : 540-52. https://doi.org/10.17305/bjbms.2021.6723
  33. Lv Z, Ye S, Wang Z, Xin P, Chen Y, Tan Z, et al. Long non-coding RNA TSPEAR antisense RNA 2 is downregulated in rheumatoid arthritis and inhibits the apoptosis of fibroblast-like synoviocytes by downregulating microRNA-212-3p (miR-212-3p). Bioengineered. 2022 ; 13(2) : 4166-72. https://doi.org/10.1080/21655979.2021.2021347
  34. Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, et al. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol. 2021; 90: 107141. https://doi.org/10.1016/j.intimp.2020.107141
  35. Dai Q, Sun J, Dai T, Xu Q, Ding Y. miR-29c-5p knockdown reduces inflammation and blood-brain barrier disruption by upregulating LRP6. Open Med (Wars). 2022 ; 17(1) : 353-64. https://doi.org/10.1515/med-2022-0438
  36. Huang B, Guo S, Zhang Y, Lin P, Lin C, Chen M, et al. MiR-223-3p alleviates trigeminal neuropathic pain in the male mouse by targeting MKNK2 and MAPK/ERK signaling. Brain Behav. 2022 ; 12(7) : e2634. https://doi.org/10.1002/brb3.2634
  37. Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, et al. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol. 2021. https://doi.org/10.1007/s10565-021-09665-2
  38. Li X, Lou X, Xu S, Du J, Wu J. Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/NLRP3 by Circ 0001723. Biol Res. 2020 ; 53(1) : 35. https://doi.org/10.1186/s40659-020-00302-6