DOI QR코드

DOI QR Code

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area

포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구

  • Lee, Ji-Hyun (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Eui-Jun (Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • 이지현 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 김의준 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 신동복 (공주대학교 지질환경과학과)
  • Received : 2022.02.19
  • Accepted : 2022.02.24
  • Published : 2022.02.28

Abstract

The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.

고남산 반려암 복합체는 경기도 포천군 관인면 일대에 분포하고, 마그마 분화과정의 결과 다양한 반려암질 화성암과 Fe-Ti oxide 광화작용으로 구성되며, 후기 화성작용 동안 반려암질 페그마타이트와 휘석-인회석-저어콘 우세 암석들은 다시 반려암질 모암을 관입하고 있다. 반려암질 페그마타이트는 다양한 규모와 형태로 반려암질 모암의 몬조섬록암과 산화물 반려암(oxide gabbro)을 관입하고, 고품위 Fe-Ti oxide 광화작용과 공간적으로 밀접하게 산출한다. 반려암질 페그마타이트는 구성광물에 따라 사장석-각섬석 우세와 휘석-감람석 우세 페그마타이트로 세분되며, 두 암상은 명확한 암상경계를 갖는다. 사장석-각섬석 페그마타이트는 휘석, 티탄철석, 스핀, 인회석, 흑운모가 부수적으로 주 구성광물의 간극을 채운다. 부분적으로 거정의 라스(lath)상 사장석(An2-26Ab72-98Or0-2) 결정 간 각진 공간을 각섬석이 충전하는 간립상 조직(intergraunlar texture)을 보인다. 휘석-감람석 페그마타이트는 암회색 내지 흑색을 띠며, 부수적으로 자철석, 티탄철석, 첨정석, 방해석, 인회석 등이 함께 산출한다. 휘석(En35-36Fs8-9Wo55)과 감람석(Fo84-85Fa15-16)은 부분적으로 세립의 자형 감람석을 거정의 휘석이 에워싸는 포이킬리틱 조직(poikilitic texture)을 보인다. Fe-Ti oxide 광물은 자철석과 티탄철석으로 구성되고, 주로 먼저 형성된 규산염 광물들의 간극을 충전한다. 그 결과로 Fe-Ti oxide 광물들은 주변 규산염광물들과의 경계부를 따라 각섬석과 흑운모로 구성된 반응연(reaction rim)이 발달한다. 자철석은 결정 내 다량의 산화용리(oxyexsolved)된 격자형(trellis type) 티탄철석과 첨정석 엽편을 포함하고, 자철석 호정원소인 Ti, Al, Mg, V 등이 농집되어 있다. 반려암질 페그마타이트와 반려암 모암 간 암상경계와 광물학적 비평형은 반려암질 페그마타이트의 형성이 마그마 분화과정 중 반려암 모암으로부터 현 위치에서 직접적으로 형성되기 보다는 Fe-부화 멜트(혹은 용액)로부터 현 위치로 이동 후 집적되었을 것으로 사료된다. 따라서 후기 화성활동의 추가 연구는 반려암질 마그마의 분화과정 뿐 아니라, 마그마 분화과정의 결과로 반려암질 암석 내에 형성된 Fe-Ti oxide 광화작용을 이해하는데 중요한 정보를 제공할 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 재정적 지원으로 수행 중인 한국지질자원연구원의 기본사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(GP2020-007)"과제의 일환으로 수행되었습니다. 논문의 세심한 검토와 건설적 제안을 주신 심사위원님들께 감사의 말씀을 드립니다.

References

  1. Barnes, S.J., Maier, W.D. and Ashwal, L.D. (2004) Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chem. Geol., v.208, p.293-317. doi: https://doi.org/10.1016/j.chemgeo.2004.04.018
  2. Beard, J.S. and Day, H.W. (1986) Origin of gabbro pegmatite in the Smartville intrusive complex, northern Sierra Nevada, California. Am. Mineral. v.71, p.1085-1099.
  3. Beard, J.S. and Scott, S.R. (2018) A Model for the High-temperature Origin and Paradoxical Distribution of Pegmatites in Mafic Plutons, Smartville Complex, California. J. Petrol. v.59, p.3-10. doi: 10.1093/petrology/egy015
  4. Boudreau. A. (1999) Fluid Fluxing of Cumulates: the J-M Reef and Associated Rocks of the Stillwater Complex, Montana. Journal of Petrology, v.40, p.755-772. doi: 10.1093/petroj/40.5.755
  5. Bow, C., Wolfgram, D., Turner, A., Barnes, S., Evans, J., Zdepski, M. and Boudreau, A. (1982) Investigations of the Howland Reef of the Stillwater Complex, Minneapolis Adit area; stratigraphy, structure, and mineralization. Econ. Geol. v.77, p.1481-1492. doi: 10.2113/gsecongeo.77.6.1481
  6. Bristow, D.M. (1989) The Petrology and Geochemistry of the Lower Critical Zone, Winterveld Chrome Mine-Eastern Bushveld Complex, with Particular Reference to the Disruptive Pegmatoids. Unpublished PhD Thesis, University of Natal, Pietermaritzburg, 305p.
  7. Cameron, E.N. and Desborough, G.A. (1964) Origin of certain magnetite-bearing pegmatites in the eastern part of the Bushveld complex, South Africa. Econ. Geol. v.59, p.197-225. doi: 10.2113/gsecongeo.59.2.197
  8. Cashman, K.V. (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol., v.113, p.126-142. doi: 10.1007/BF00320836
  9. Cawthorn, R.G., Harris, C. and Kruger, F.J. (2000) Discordant ultramafic pegmatoidal pipes in the Bushveld Complex. Contrib. Mineral. Petrol., v.140, p.119-133. doi: 10.1007/s004100000175
  10. Cawthorn, R.G. and Boerst, K. (2006) Origin of the Pegmatitic Pyroxenite in the Merensky Unit, Bushveld Complex, South Africa. J. Petrol., v.47, p.1509-1530. doi: 10.1093/petrology/egl017
  11. Cawthorn, R.G., Latypov, R., Klemd, R. and Vuthuza, A. (2018) Origin of discordant ultramafic pegmatites in the Bushveld Complex from externally-derived magmas. South African J. Geol., v.121, p.287-310. doi: 10.25131/sajg.121.0027
  12. Cerny, P. (1991a) Rare-element granite pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits: Geoscience Canada, v.18, p.49-67.
  13. Cerny, P. (1991b) Rare-element granite pegmatites. Part II: Regional to global environments and petrogenesis: Geoscience Canada, v.18, p.68-81.
  14. Cho, J.D. and Bang, K.Y. (1980) A report of the magnetic survey on the titanomagnetite ore bodies of the Mt. Gonam Area. Korea Research Institute of Geoscience and Mineral Resources, v.8, p.149-164.
  15. Cho, D.-L., Kwon, S.-T., Jeon, E.-Y. and Armstrong, R. (2005) SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: Implications for the Phanerozoic tectonics of East Asia [abs.]. In: Annual Meeting of the Geological Society of America, 171, 6.
  16. Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C. and Bray, C.J. (2008) Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA. J. Petrol., v.49, p.1133-1160. doi: 10.1093/petrology/egn020
  17. Honour, V.C. (2019) Microstructural evolution of silicate immiscible liquids in solidifying ferrobasalts. PhD Thesis, University of Cambridge, 207p. doi: 10.17863/CAM.50738
  18. Hund, K., La Porta, D., Fabregas, T.P., Laing, T. and Drexhage, J. (2020) Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. International Bank for Reconstruction and Development/The World Bank. 110p.
  19. Hwang, J. and Kim, Y. (2007) Geological report of the Jipori sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 54p (in Korean with English abstract).
  20. Hwang, S.K. and Ryu, H.Y. (2011) Volcanic processes of the Cretaceous ignimbrites, Cheolwon Basin: Magmatic processes of the Dongmakgol Tuff. J. Geo. Soc. Korea, v.47, p.647-664.
  21. Irvine, T.N. (1974) Petrology of the Duke Island Ultramafic Complex Southeastern Alaska. Geological Society of America. doi: 10.1130/MEM138
  22. Irvine, T.N., Andersen, J.C.O and Brooks, X.X. (2001) Excursion guide to the Skaergaard intrusion, Kangerdlugssuaq area, east Greenland. International Geological Correlation Project, I.
  23. Jahns, R.H. and Burnham, C.W. (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol., v.64, p.843-864. doi: 10.2113/gsecongeo.64.8.843
  24. Jahns, R.H. (1982) Internal evolution of pegmatite bodies: Mineralogical Association of Canada Short Course Handbook, v.8, p.293-327.
  25. Jang, H.W., Yum, B.W. and Park, N.Y. (1987) Petrochemical Study on the Alkaline Gabbroic Host Rocks of Titaniferous Magnetite Deposits in Gonamsan, Yeoncheon-Gun, South Korea. Korean Soc. Econ. Environ. Geol., v.20, p.85-95.
  26. Kang, M.W., Kim, J.H. and Choi, J.B. (2011) Occurrence of the Nb-Ta Ore Bodies in Pegmatites, Mujoo. J. Korean Soc. Miner. v.24, p.133-143. doi: 10.9727/jmsk.2011.24.2.133
  27. Kee, W.-S., Lim, S.-B., Kim, H., Kim, B.C., Hwang, S.K., Song, K.-Y. and Kihm, Y.,-H. (2008) Geological report of the Yeoncheon Sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 83p. (in Korean with English summary)
  28. Kim, S.Y. and Seo, J.R. (1989) Study on Ta-Nb-Be-Li pegmatites and drilling exploration in Muju, Danyang area. Korea Institute of Geoscience and Mineral Resources, 107p.
  29. Kim, K.H. and Lee, H.J. (1994a) Geochemistry and K-Ar Age of Gabbroic Rocks in the Konamsan Area of Yonchon Province, South Korea. Korean Soc. Econ. Environ. Geol., v.27, p.29-39.
  30. Kim, K.H., Lee, H.J. and Chon, H.T. (1994b) Ore genesis of the Yonchon titaniferous iron ore deposits, South Korea. Korean Soc. Econ. Environ. Geol. v.27, p.117-130.
  31. Lee, B.Y., Oh, C.W, Lee, S.H., Seo, J. and Yi, K. (2020) Ages and tectonic settings of the Neoproterozoic igneous rocks in the Gyeonggi Massif of the southern Korean Peninsula and the correlation with the Neoproterozoic igneous rocks in China. Lithos, 370-371C, 105625. doi: https://doi.org/10.1016/j.lithos.2020.105625
  32. Lee, J.H. (2021) Iron-Ti (-V) oxide mineralization related to magmatic fractionation of the Gonamsan intursion in Pocheon, South Korea. MSc Thesis, Kongju National University, 137p.
  33. London, D. (2008) Pegmatites: Canadian Mineralogist Special Publication, 368p.
  34. London, D. (2009) The origin of primary textures in granitic pegmatites. Canadian Mineral, v.47, p.697-724. doi: 10.3749/canmin.47.4.697
  35. McBirney, A.R. and Noyes, R.M. (1979) Crystallization and Layering of the Skaergaard Intrusion. J. Petrol., v.20, p.487-554. doi: 10.1093/petrology/20.3.487
  36. McBirney, A.R. and Sonnenthal, E.L. (1990) Metasomatic replacement in the Skaergaard Intrusion, East Greenland: Preliminary observations. Chem. Geol., v.88, p.245-260. doi: https://doi.org/10.1016/0009-2541(90)90092-L
  37. Moon, S.H. and Park, H.I. (1994) Alterations of Granite Gneiss and their Genetic Relationshup to Tin Mineralization in the Uljin Area. Geol. Soc. Korea, v.4, p.125-139.
  38. Nabelek, P.I., Whittington, A.G. and Sirbescu, M-.L.C. (2010) The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts. Contrib. Mineral. Petrol., v.160, p.313-325. doi: 10.1007/s00410-009-0479-1
  39. Phelps, P.R., Lee, C.T.A. and Morton, D.M. (2020) Episodes of fast crystal growth in pegmatites. Nat Commun, 11, 4986. doi: 10.1038/s41467-020-18806-w
  40. Raedeke, L.D. and McCallum, I.S. (1984) Investigations in the Stillwater Complex: Part II. Petrology and Petrogenesis of the Ultramafic Series. J. Petrol., v.25, p.395-420. doi: 10.1093/petrology/25.2.395
  41. Samyang Resources (2020) Annual Investigation Report of Gwanin-in mine, 151p.
  42. Scoon, R.N., Costin, G. and Grabe, P.J. (2017) Geology and Origin of the Vanadiferous Fe-Ti Oxide-rich Kennedy's Vale Discordant Body, Eastern Limb of the Bushveld Complex, South Africa. South African J. Geol., v.120, p.251-270. doi: 10.25131/gssajg.120.2.251
  43. Scoon, R.N. and Mitchell, A.A. (1994) Discordant Iron-Rich Ultramafic Pegmatites in the Bushveld Complex and their Relationship to Iron-Rich Intercumulus and Residual Liquids. J. Petrol., v.35, p.881-917. doi: 10.1093/petrology/35.4.881
  44. Scoon, R.N. and Mitchell, A.A. (2011) The principal geological features of the Mooihoek platiniferous dunite pipe, eastern limb of the Bushveld Complex, and similarities with Replaced Merensky Reef at the Amandelbult Mine, South Africa. South African J. Geol., v.114, p.15-40. doi: 10.2113/gssajg.114.1.15
  45. Simmons, W.B. and Webber, K.L. (2008) Pegmatite Genesis: State of the Art. European Journal of Mineralogy, v.20, p.421-438. doi: 10.1127/0935-1221/2008/0020-1833
  46. Stormer, J.C. (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multi-component iron-titanium oxides. Am. Mineral, v.68, p.586-594.
  47. Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders, A.D., Norry, M.J. Eds., Magmatism in Ocean Bains. Geol. Soc. Spec. Publ., London, p.313-345. doi: 10.1144/GSL.SP.1989.042.01.19
  48. Viljoen, M.J and Scoon, R.N (1985) The distribution and main geologic features of discordant bodies of iron-rich ultramafic pegmatite in the Bushveld Complex. Econ. Geol., v.80, p.1109-1128. doi: 10.2113/gsecongeo.80.4.1109
  49. Winkler, H.G.F. (1949) Crystallization of basaltic magma as recorded by variation of crystal-size in dikes. Mineral. Mag. J. Mineral. Soc., v.28, p.557-574. doi: 10.1180/minmag.1949.028.205.04
  50. Yum, B.W. (1985) Petrochemical Study on the amphibolite and associated Titaniferous Magnetite Deposits Gwanin-myeon, Yeoncheon-Gun, South Korea, Unpublished Msc Thesis, Seoul National University, 68p.