DOI QR코드

DOI QR Code

Rich Se Nanoparticles Modified Mo-W18O49 as Enhanced Electrocatalyst for Hydrogen Evolution Reaction

  • Wang, Jun Hui (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Meng, Ze-Da (Suzhou University of Science and Technology, School of Chemistry and Life Sciences) ;
  • Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2021.10.29
  • 심사 : 2021.12.22
  • 발행 : 2022.02.27

초록

Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm-2.

키워드

참고문헌

  1. X. Zhang, M. Jin, Q. Lian, O. Peng, S. Niu, Z. Ai, A. Amini, S. Song and C. Cheng, Chem. Eng. J., 423, 130218 (2021). https://doi.org/10.1016/j.cej.2021.130218
  2. Y. Yan, P. Wang, J. Lin, J. Cao and J. Qi, J. Energy Chem., 58, 446 (2021). https://doi.org/10.1016/j.jechem.2020.10.010
  3. B. Ren, D. Li, Q. Jin, H. Cui and C. Wang, J. Mater. Chem. A, 5, 24453 (2017). https://doi.org/10.1039/C7TA08090E
  4. W. Reitz, Materials and Manufacturing Processes, 22, 789 (2007). https://doi.org/10.1080/10426910701416336
  5. H. W. Zhou, Y. T. Shi, Q. S. Dong, Y. X. Wang, C. Zhu, L. Wang, N. Wang, Y. Wei, S. Tao and T. Ma, J. Mater. Chem. A, 2, 4347 (2014). https://doi.org/10.1039/c3ta14345g
  6. G. Liu, J. Pan, L. C. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald and H. M. Cheng, Adv. Funct. Mater., 22, 3233 (2012). https://doi.org/10.1002/adfm.201200414
  7. X. Zhong, Y. Y. Sun, X. L. Chen, G. L. Zhuang, X. N. Li and J. G. Wang, Adv. Funct. Mater., 26, 5778 (2016). https://doi.org/10.1002/adfm.201601732
  8. Y. Y. Zhao, Q. W. Tang, B. L. He and P. Z. Yang, Int. J. Hydrogen Energy, 42, 14535 (2017).
  9. B. Seo, H. Y. Jeong, S. Y. Hong, A. Zak and S. H. Joo, Chem. Commun., 51, 8334 (2015). https://doi.org/10.1039/c5cc02472b
  10. Y. Zhao, Q. Tang, P. Yang and B. He, Chem. Commun., 53, 4323 (2017). https://doi.org/10.1039/C7CC01249G
  11. S. Nath, S. K. Ghosh and S. Panigahi, Langmuir, 20, 7880 (2004). https://doi.org/10.1021/la049318l
  12. H. Ito, M. Oka, T. Ogino, A. Takeda and Y. Mizushima, Jpn. J. Appl. Phys., 21, 77 (1982).
  13. C. Luo, Y. Xu, Y. Zhu, Y. Liu, S. Zheng, Y. Liu, A. Langrock and C. Wang, ACS Nano., 7, 8003 (2013). https://doi.org/10.1021/nn403108w
  14. H. Yi, X. Zhang, R. J. Zheng, S. X. Song, Q. An and H. M. Yang, Appl. Surf. Sci., 565, 150505 (2021). https://doi.org/10.1016/j.apsusc.2021.150505
  15. S. N. F. M. Nasir, H. Ullah, M. Ebadi, A. A. Tahir, J. S. Sagu and M. A. M. Teridi, J. Phys. Chem. C, 121, 6218 (2017). https://doi.org/10.1021/acs.jpcc.7b01149
  16. Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, Nanoscale, 8, 1676 (2016). https://doi.org/10.1039/C5NR07370G
  17. C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana and T. Sato, Inorg. Chem., 51, 4763 (2012). https://doi.org/10.1021/ic300049j
  18. M. Anandan, Y. S. Chang, C. Y. Chen, C. J. Ho, C. M. Cheng, H. R. Chen, T. Y. Fu, Y. W. Chu, K. Y. Lee, L. C. Chao and R. S. Chen, Physica E, 135, 114988 (2022). https://doi.org/10.1016/j.physe.2021.114988
  19. P. Zhang, B. Cao, R. A. Soomro, N. Sun and B. Xu, Chin. Chem. Lett., 32, 282 (2021). https://doi.org/10.1016/j.cclet.2020.10.006
  20. A. K. Nayak and D. Pradhan, J. Phys. Chem. C, 122, 3183 (2018). https://doi.org/10.1021/acs.jpcc.7b09479
  21. N. Zhang, A. Jalil, D. X. Wu, S. M. Chen, Y. F. Liu, C. Gao, W. Ye, Z. M. Qi, H. X. Ju, C. M. Wang, X. J. Wu, L. Song, J. F. Zhu and Y. J. Xiong, J. Am. Chem. Soc., 140, 9434 (2018). https://doi.org/10.1021/jacs.8b02076
  22. L. Xu, D. X. Gu, X. T. Chang, L. G. Chai, Z. Li, X. K. Jin and S. B. Sun, Micro Nano Lett., 13, 541 (2018). https://doi.org/10.1049/mnl.2017.0719
  23. H. Katsumata, T. Sakai, T. Suzuki and S. Kaneco, Ind. Eng. Chem. Res., 53, 8018 (2014). https://doi.org/10.1021/ie5012036
  24. D. L. Zheng, P. Cheng, Q. Q. Yao, Y. R. Fang, M. Yang, L. Zhu and L. S. Zhang, J. Alloys Compd., 848, 156588 (2020). https://doi.org/10.1016/j.jallcom.2020.156588
  25. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013