DOI QR코드

DOI QR Code

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali (Ministry of Education, Tikrit Directorate of Education) ;
  • Jasim, Kareem Ali (University of Baghdad Collage of Education for Pure Sciences Ibn Al-Haitham, Department of Physics) ;
  • Miran, Hussein Ali Jan (University of Baghdad Collage of Education for Pure Sciences Ibn Al-Haitham, Department of Physics)
  • 투고 : 2021.10.27
  • 심사 : 2022.01.17
  • 발행 : 2022.02.27

초록

In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

키워드

참고문헌

  1. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175
  2. C.-J. Kim, Superconductor Levitation, p.213, Springer, Singapore (2019).
  3. C. Yao and Y. Ma, iScience, 24, 102541 (2021). https://doi.org/10.1016/j.isci.2021.102541
  4. J. G. Bednorz and K. A. Muller, Zeitschrift fur Phys. B Condens. Matter, 64, 189 (1986). https://doi.org/10.1007/BF01303701
  5. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett., 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908
  6. C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Zeitschrift fur Phys. B Condens. Matter, 68, 421 (1987). https://doi.org/10.1007/BF01471071
  7. S. Massidda, J. Yu and A. Freeman, Phys. C., 152, 251 (1988). https://doi.org/10.1016/0921-4534(88)90136-0
  8. C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng and Y. Y. Xue, Nature, 365, 323 (1993). https://doi.org/10.1038/365323a0
  9. A. Rojek, K. Fischer, S. Thierfeldt, R. R. Arons and W. Zinn, Solid State Commun., 72, 113 (1989). https://doi.org/10.1016/0038-1098(89)90890-9
  10. Z. Z. Sheng, W. Kiehl, J. Bennett, A. E. Ali, D. Marsh, G. D. Mooney, F. Arammash, J. Smith, D. Viar and A. M. Hermann, Appl. Phys. Lett., 52, 1738 (1988). https://doi.org/10.1063/1.99717
  11. K. A. Jassim and T. J. Alwan, J. Supercond. Novel Magn., 22, 861 (2009). https://doi.org/10.1007/s10948-009-0512-7
  12. L. A. Mohammed and K. A. Jasim, Ibn AL- Haitham J. Pure Appl. Sci., 31, 26 (2018). https://doi.org/10.30526/31.3.2024
  13. G. Y. Hermiz, B. A. Aljurani and H. A. Thabit, Baghdad. Sci. J., 11, 713 (2014). https://doi.org/10.21123/bsj.11.2.713-717
  14. K. Momma and F. J. Izumi, J. Appl. Crystallogr., 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970
  15. K. A. Jasim and T. J. Alwan, J. Supercond. Nov. Magn., 30, 3451 (2017). https://doi.org/10.1007/s10948-017-4147-9
  16. P. M. Woodward and P. Karen, Inorg. Chem., 42, 1121 (2003). https://doi.org/10.1021/ic026022z
  17. M. K. Kamil and K. A. Jasim, IOP Conf. Ser. Mater. Sci. Eng., 928, 072109 (2020). https://doi.org/10.1088/1757-899X/928/7/072109
  18. W. P. Davey, Phys. Rev., 25, 753 (1925). https://doi.org/10.1103/PhysRev.25.753
  19. Y. Rosenberg, V. S. Machavariani, A. Voronel1, S. Garber, A. Rubshtein, A. I. Frenkel, and E. A. Stern, J. Phys.: Condens. Matter, 12, 8081 (2000). https://doi.org/10.1088/0953-8984/12/37/307
  20. L. A. Mohammed and K. A. Jasim, J. Phys.: Conf. Ser., 1879, 032069 (2021). https://doi.org/10.1088/1742-6596/1879/3/032069
  21. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas and G. Janusas, Nanomaterials, 10, 1 (2020).
  22. K. A. Jasim, J. Supercond. Novel Magn., 25, 1713 (2012). https://doi.org/10.1007/s10948-012-1507-3
  23. K. A. Jassim, Turkish J. Phys., 36, 245 (2012).
  24. R. S. Al-Khafaji and K. A. Jasim, AIMS Mater. Sci., 8, 550 (2021). https://doi.org/10.3934/matersci.2021034
  25. M. K. Kamil and K. A. Jasim, IOP Conf. Ser. Mater. Sci. Eng., 928, 072109 (2020). https://doi.org/10.1088/1757-899X/928/7/072109