DOI QR코드

DOI QR Code

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review

미생물막 형성을 막기 위한 살균 물질 함유 막: 총설

  • Son, Soohyun (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 손수현 (연세대학교 언더우드학부 생명과학공학과) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.02.15
  • Accepted : 2022.02.22
  • Published : 2022.02.28

Abstract

Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

세균은 분리막, 식품 포장 필름 및 바이오 의료 기기와 같은 다양한 미생물 막의 표면 위에서 자란다. 미생물 막의 성장은 엑소폴리사카라이드의 복잡한 구조 형성과 밀접한 관련이 있다. 미생물 막이 항균제의 대량 수송의 어려움으로 성장하게 될 경우 항균효과는 급격하게 감소한다. 항균 활동을 활성화하기 위해서 막의 표면은 살균 특성이 있는 기능성 물질들로 변형, 코팅 또는 고정한다. 한 가지 아이디어는 막 표면에 양전하 이온을 도입하는 것이다. 양전하 이온인 4차 암모늄 그룹의 존재는 마그네슘이나 칼슘같이 세균 세포벽에 존재하는 2가 금속이온을 대체할 수 있다. 세포막 파괴의 효능은 표면환경에서 사용 가능한 작용제들의 이동성에 달려있다. 이 리뷰에서는 4차 암모늄 그룹, 헬라민(helamine), 쌍성이온(zwitterion)과 같이 여러 살생물제를 포함하고 있는 막들을 다룬다.

Keywords

References

  1. B. Gautam, S. A. Ali, J. T. Chen, and H. H. Yu, "Hybrid "kill and Release" Antibacterial cellulose papers obtained via surface-initiated atom transfer radical polymerization", ACS Appl. Bio Mater., 4, 7893 (2021). https://doi.org/10.1021/acsabm.1c00817
  2. S. Li, Z. Guo, H. Zhang, X. Li, W. Li, P. Liu, Y. Ren, and X. Li, "ABC triblock copolymers antibacterial materials consisting of fluoropolymer and polyethylene glycol antifouling block and quaternary ammonium salt sterilization block", ACS Appl. Bio Mater., 4, 3166 (2021). https://doi.org/10.1021/acsabm.0c01571
  3. W. S. Yun, J. W. Rim, and Y. J. Cho, "Restoration of membrane performance for damaged reverse osmosis membranes through in-situ healing", Membr. J., 29, 96 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.2.96
  4. D-E. Kwon and J, Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse applications", Membr. J., 28, 196 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.196
  5. N. M. Justino, D. S. Vicentini, K. Ranjbari, M. Bellier, D. J. Nogueira, W. G. Matias, and F. Perreault, "Nanoparticle-templated polyamide membranes for improved biofouling resistance", Environ. Sci. Nano, 8, 565 (2021). https://doi.org/10.1039/D0EN01101K
  6. C. Liu, A. F. Faria, J. Jackson, Q. He, and J. Ma, "Enhancing the anti-fouling and fouling removal properties of thin-film composite membranes through an intercalated functionalization method", Environ. Sci. Water Res. Technol., 7, 1336 (2021). https://doi.org/10.1039/D1EW00188D
  7. Y. Wang, F. Wang, H. Zhang, B. Yu, H. Cong, and Y. Shen, "Antibacterial material surfaces/interfaces for biomedical applications", Appl. Mater., 25, 101192 (2021).
  8. J. Yang, X. Zhu, J. Lin, Q. Wang, L. Zhang, N. Yang, L. Lin, J. Zhao, Y. Zhao, and L. Chen, "Integration of a hydrophilic hyperbranched polymer and a quaternary ammonium compound to mitigate membrane biofouling", ACS Applied Polymer Materials, 4, 229 (2021). https://doi.org/10.1021/acsabm.0c01145
  9. R. Yu, R. Zhu, J. Jiang, R. Liang, X. Liu, and G. Liu, "Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection", J. Colloid Interface Sci., 598, 302 (2021). https://doi.org/10.1016/j.jcis.2021.04.040
  10. C. Liu, D. Song, W. Zhang, Q. He, X. Huangfu, S. Sun, Z. Sun, W. Cheng, and J. Ma, "Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation", Water Res., 168, 115181 (2020). https://doi.org/10.1016/j.watres.2019.115181
  11. F. Wang, T. Zheng, P. Wang, M. Chen, Z. Wang, H. Jiang, and J. Ma, "Enhanced water permeability and antifouling property of coffee-ring-textured polyamide membranes by in situ incorporation of a zwitterionic metal-organic framework", Environ. Sci. Technol., 55, 5324 (2021). https://doi.org/10.1021/acs.est.0c07122
  12. X. Yu, Y. Yang, W. Yang, X. Wang, X. Liu, F. Zhou, and Y. Zhao, "One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS", J. Colloid Interface Sci., 610, 234 (2022). https://doi.org/10.1016/j.jcis.2021.12.038
  13. M. M. Zhu, Y. Fang, Y. C. Chen, Y. Q. Lei, L. F. Fang, B. K. Zhu, and H. Matsuyama, "Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers", J. Colloid Interface Sci., 584, 225 (2021). https://doi.org/10.1016/j.jcis.2020.09.041
  14. J. Gao, E. M. White, Q. Liu, and J. Locklin, "Evidence for the phospholipid sponge effect as the biocidal mechanism in surface-bound polyquaternary ammonium coatings with variable cross-linking density", ACS Appl. Mater., Interfaces, 9, 7745 (2017). https://doi.org/10.1021/acsami.6b14940
  15. C. K. S. Haresco, M. B. M. Y. Ang, B. T. Doma, S.-H. Huang, and K.-R. Lee, "Performance enhancement of thin-film nanocomposite nanofiltration membranes via embedment of novel polydopamine-sulfobetaine methacrylate nanoparticles", Sep. Purif. Technol., 274, 119022 (2021). https://doi.org/10.1016/j.seppur.2021.119022
  16. Y. Ma, Z. Zhang, N. Nitin, and G. Sun, "Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation", J. Colloid Interface Sci., 578, 779 (2020). https://doi.org/10.1016/j.jcis.2020.06.037
  17. Y. Si, Z. Zhang, W. Wu, Q. Fu, K. Huang, N. Nitin, B. Ding, and G. Sun, "Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications", Sci. Adv., 4, 1 (2018).
  18. G. Ye, J. Lee, F. Perreault, and M. Elimelech, "Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated "defending" and "attacking" strategies against biofouling", ACS Appl. Mater. Interfaces, 7, 23069 (2015). https://doi.org/10.1021/acsami.5b06647
  19. S. Yi, Y. Zou, S. Sun, F. Dai, Y. Si, and G. Sun, "Rechargeable photoactive silk-derived nanofibrous membranes for degradation of reactive red 195", ACS Sustainable Chem. Eng., 7, 986 (2019). https://doi.org/10.1021/acssuschemeng.8b04646
  20. R. Bai, Q. Zhang, L. Li, P. Li, Y. J. Wang, O. Simalou, Y. Zhang, G. Gao, and A. Dong, "N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway", ACS Appl. Mater. Interfaces, 8, 31530 (2016). https://doi.org/10.1021/acsami.6b08431
  21. Y. Si, J. Li, C. Zhao, Y. Deng, Y. Ma, D. Wang, and G. Sun, "Biocidal and rechargeable N-halamine nanofibrous membranes for highly efficient water disinfection", ACS Biomater. Sci. Eng., 3, 584 (2017).
  22. G. Li, B. Liu, L. Bai, Z. Shi, X. Tang, J. Wang, H. Liang, Y. Zhang, and B. Van der Bruggen, "Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation", Sep. Purif. Technol., 238, 116412 (2020). https://doi.org/10.1016/j.seppur.2019.116412
  23. C. Liu, J. Lee, J. Ma, and M. Elimelech, "Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer", Environ. Sci. Technol., 51, 2161 (2017). https://doi.org/10.1021/acs.est.6b05992
  24. X. Zhao, Y. Su, Y. Li, R. Zhang, J. Zhao, and Z. Jiang, "Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances", J. Membr. Sci., 450, 111 (2014). https://doi.org/10.1016/j.memsci.2013.08.044