DOI QR코드

DOI QR Code

Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane

고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향

  • Moon, Seung Jae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Young Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kang, Du Ru (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, So Youn (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 문승재 (연세대학교 화공생명공학과) ;
  • 김영준 (연세대학교 화공생명공학과) ;
  • 강두루 (연세대학교 화공생명공학과) ;
  • 이소연 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.12.25
  • Accepted : 2022.01.12
  • Published : 2022.02.28

Abstract

Solid-state supercapacitors with high safety and robust mechanical properties are attracting global attention as next-generation energy storage devices. As an electrode of a supercapacitor, an economical carbon-based electrode is widely used. However, when an aqueous electrolyte is introduced, the charge transfer resistance increases because the interfacial contact between the hydrophobic electrode surface and aqueous electrolyte is not good. In this regard, we propose a method to obtain higher electrochemical performance based on improved interfacial properties by treating the electrode surface with oxygen plasma. The surface hydrophilization induced by the enriched oxygen functionalities was confirmed by the contact angle measurement. As a result, the degree of hydrophilization was easily adjusted by controlling the power and duration of the oxygen plasma treatment. As the electrolyte of the supercapacitor, PVA/H3PO4, which is a typical solid-state aqueous electrolyte, was used. Free-standing membranes of PVA/H3PO4 electrolyte were prepared and then pressed onto the electrode. The optimal condition was to perform oxygen plasma treatment for 5 seconds with a low power of 15 W, and the energy density of the supercapacitor increased by about 8%.

높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.

Keywords

Acknowledgement

This work was supported by a National Research Foundation (NRF) of South Korea grant funded by the Ministry of Science, ICT, and Future Planning (NRF-2018M3A7B4071535, NRF-2017R1D1A1B06028030).

References

  1. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors", Chem. Soc. Rev., 44, 7484 (2015). https://doi.org/10.1039/C5CS00303B
  2. H. J. Min, J. H. Jung, M. Kang, and J. H. Kim, "Synthesis of Starch-g-PAN polymer electrolyte membrane and its application to flexible solid supercapacitors", Membr. J., 29, 164 (2019). https://doi.org/10.14579/membrane_journal.2019.29.3.164
  3. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  4. P. Li, T. Shang, X. Dong, H. Li, Y. Tao, and Q. H. Yang, "A Review of compact carbon design for supercapacitors with high volumetric performance", Small, 17, 2007548 (2021). https://doi.org/10.1002/smll.202007548
  5. H. J. Min, M. S. Park, M. Kang, and J. H. Kim, "Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors", Chem. Eng. J., 412, 127500 (2021). https://doi.org/10.1016/j.cej.2020.127500
  6. P. Gajewski, and F. Beguin, "Hydrogel-polymer electrolyte for electrochemical capacitors with high volumetric energy and life span", ChemSusChem, 13, 1876 (2020). https://doi.org/10.1002/cssc.201903077
  7. H. Zhang, X. Liu, H. Li, I. Hasa, and S. Passerini, "Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries", Angew. Chem. Int. Ed., 60, 598 (2021). https://doi.org/10.1002/anie.202004433
  8. J. Huang, K. Yuan, and Y. Chen, "Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges", Adv. Funct. Mater., 2108107 (2021).
  9. Q. Liu, J. Zhou, C. Song, X. Li, Z. Wang, J. Yang, J. Cheng, H. Li, and B. Wang, "2.2 V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt" gel electrolyte and N-Doped graphene fiber", Energy Storage Mater., 24, 495 (2020). https://doi.org/10.1016/j.ensm.2019.07.008
  10. S. Thiemann, S. J. Sachnov, F. Pettersson, R. Bollstrom, R. Osterbacka, P. Wasserscheid, and J. Zaumseil, "Cellulose-based ionogels for paper electronics", Adv. Funct. Mater., 24, 625 (2014). https://doi.org/10.1002/adfm.201302026
  11. T. Mao, S. Wang, Z. Yong, X. Wang, X. Wang, H. Chen, G. Liu, D. Wang, and Z. Wang, "High-stable, outstanding heat resistance ionogel electrolyte and the poly(3,4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor", Chem. Eng. J., 417, 129269 (2021). https://doi.org/10.1016/j.cej.2021.129269
  12. J. Zhao, J. Gong, G. Wang, K. Zhu, K. Ye, J. Yan, and D. Cao, "A self-healing hydrogel electrolyte for flexible solid-state supercapacitors", Chem. Eng. J., 401, 125456 (2020). https://doi.org/10.1016/j.cej.2020.125456
  13. M. Sandhiya, Vivekanand, S. Suresh Balaji, and M. Sathish, "Na2MoO4-Incorporated polymer gel electrolyte for high energy density flexible supercapacitor", ACS Appl. Energy Mater., 3, 11368 (2020). https://doi.org/10.1021/acsaem.0c02299
  14. S. Park and R. Patel, "Recent progress in conductive polymer-based membranes", Membr. J., 31, 101 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.101
  15. J. H. Lee and M. S. Kang, "Polymer electrolyte membranes for flexible electrochromic device", Membr. J., 30, 333 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.333
  16. M. S. Park, D. H. Kim, J. H. Lee, and J. H. Kim, "Polymer electrolyte membranes consisting of PVA-g-POEM graft copolymers for supercapacitors", Membr. J., 29, 323 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.323
  17. H. Dai, G. Zhang, D. Rawach, C. Fu, C. Wang, X. Liu, M. Dubois, C. Lai, and S. Sun, "Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives", Energy Storage Mater., 34, 320 (2021). https://doi.org/10.1016/j.ensm.2020.09.018
  18. J. Wu, G. Xia, S. Li, L. Wang, and J. Ma, "A flexible and self-healable gelled polymer electrolyte based on a dynamically cross-Linked PVA ionogel for high-performance supercapacitors", Ind. Eng. Chem. Res., 59, 22509 (2020). https://doi.org/10.1021/acs.iecr.0c04741
  19. C. S. Lee, S. H. Ahn, D. J. Kim, J. H. Lee, A. Manthiram, and J. H. Kim, "Flexible, all-solid-state 1.4 V symmetric supercapacitors with high energy density based on comb polymer electrolyte and 1D hierarchical carbon nanotube electrode", J. Power Sources, 474, 228477 (2020). https://doi.org/10.1016/j.jpowsour.2020.228477
  20. J. H. Lee, J. Y. Lim, J. T. Park, J. M. Lee, and J. H. Kim, "Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices", Mater. Des., 149, 25 (2018). https://doi.org/10.1016/j.matdes.2018.03.060
  21. S. J. Moon, H. J. Min, C. S. Lee, D. R. Kang, and J. H. Kim, "Adhesive, free-standing, partially fluorinated comb copolymer electrolyte films for solid flexible supercapacitors", Chem. Eng. J., 429, 132240 (2022). https://doi.org/10.1016/j.cej.2021.132240
  22. D. A. Kang, K. Kim, S. S. Karade, H. Kim, and J. H. Kim, "High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte", Chem. Eng. J., 384, 123308 (2020). https://doi.org/10.1016/j.cej.2019.123308
  23. M. Fu, R. Lv, Y. Lei, and M. Terrones, "Ultralight flexible electrodes of nitrogen-doped carbon macrotube sponges for high-performance supercapacitors", Small, 17, 2004827 (2021). https://doi.org/10.1002/smll.202004827
  24. G. Lota, J. Tyczkowski, R. Kapica, K. Lota, and E. Frackowiak, "Carbon materials modified by plasma treatment as electrodes for supercapacitors", J. Power Sources, 195, 7535 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.019
  25. Z. Hou, B. Cai, H. Liu, and D. Xu, "Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications", Carbon, 46, 405 (2008). https://doi.org/10.1016/j.carbon.2007.11.053
  26. I. Kondratowicz, M. Nadolska, S. Sahin, M. Lapinski, M. Przesniak-Welenc, M. Sawczak, H. Y. Eileen, W. Sadowski, and K. Zelechowska, "Tailoring properties of reduced graphene oxide by oxygen plasma treatment", Appl. Surf. Sci., 440, 651 (2018). https://doi.org/10.1016/j.apsusc.2018.01.168
  27. S. Ali, I. A. Shah, A. Ahmad, J. Nawab, and H. Huang, "Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: A dynamic sorptionfiltration process", Sci. Total Environ., 655, 1270 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.335
  28. X. Yuan, L. Ma, J. Zhang, and Y. Zheng, "Simple pre-treatment by low-level oxygen plasma activates screen-printed carbon electrode: Potential for mass production", Appl. Surf. Sci., 544, 148760 (2021). https://doi.org/10.1016/j.apsusc.2020.148760
  29. J. K. Kim, C. S. Lee, J. H. Lee, J. T. Park, and J. H. Kim, "Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices", J. Mater. Sci. Technol., 55, 126 (2020). https://doi.org/10.1016/j.jmst.2019.10.003