DOI QR코드

DOI QR Code

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition

과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구

  • Hoseong, Kang (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • So Young, Lee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Hyoung-Juhn, Kim (Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology) ;
  • Chang Hyun, Lee (Energy Engineering Department, College of Engineering, Dankook University) ;
  • Chi Hoon, Park (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 강호성 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 이소영 (한국과학기술연구원 연료전지센터) ;
  • 김형준 (한국에너지공과대학교 수소에너지 연구소) ;
  • 이창현 (단국대학교 에너지공학과) ;
  • 박치훈 (경상국립대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2022.10.21
  • Accepted : 2022.11.14
  • Published : 2022.12.31

Abstract

The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.

지속적인 화석연료의 과도한 소비는 지구온난화와 기후환경 위기를 초래하고 있다. 이에 따라 화석연료의 대체 에너지 중 수소에너지가 주목받고 있는데, 수소에너지는 공해물질의 배출이 없고 자원적인 제약이 없다는 장점이 있다. 이에 따라 물의 전기분해를 이용하여 수소를 생산하는 수전해 시스템 및 수소에너지를 연료로 사용하여 전기를 생산하는 연료전지 시스템과 관련된 다양한 연구가 진행되고 있다. 본 연구에서는 수전해 시스템과 연료전지의 핵심 소재 중 하나인 음이온 전도성 이오노머 소재를 대상으로 과량의 수화 상태를 반영하여 3D 이오노머 모델을 제작하였다. 최종적으로 과량의 수화상태에서 이오노머의 구조적인 안정성과 성능 분석을 통해, 수전해 시스템과 연료전지의 핵심 소재인 음이온 전도성 이오노머 설계에 있어서 성능향상 인자를 제시하고자 하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(2019M3E6A1064093 / 1711127853), 부분적으로 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20011712).

References

  1. R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, "El Nino and a record CO2 rise", Nat. Clim. Change., 6, 806 (2016).
  2. C.-K. Park, "Climate change; Its impacts and our strategy to address it", J. Korean Soc. Environ. Eng, 30, 1179 (2008).
  3. B. Pivovar, N. Rustagi, and S. Satyapal, "Hydrogen at scale (H2@ Scale): Key to a clean, economic, and sustainable energy system", Electrochem Soc Interface, 27, 47 (2018).
  4. M. Gotz, J. Lefebvre, F. Mors, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb, "Renewable Power-to-Gas: A technological and economic review", Renew. Energy, 85, 1371 (2016).
  5. M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2", Renewable Sustainable Energy Rev., 69, 292 (2017).
  6. H.-S. Cho, W.-C. Cho, and C.-H. Kim, "Low-temperature alkaline water electrolysis", KIC News, 21, 23 (2018).
  7. G.-J. Hwang, K.-S. Kang, H.-J. Han, and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans Korean Hydrogen New Energy Soc, 18, 95 (2007).
  8. K. Moon and D. Pak, "The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis", J. Energy Eng., 24, 34 (2015).
  9. F. ezzahra Chakik, M. Kaddami, and M. Mikou, "Effect of operating parameters on hydrogen production by electrolysis of water", Int. J. Hydrogen Energy, 42, 25550 (2017).
  10. S.-A. Park, E.-K. Lee, J.-W. Lee, S.-K. Lee, J.-S. Moon, T.-W. Kim, and Y.-K. Cheon, "A study on performance characteristic and safety of alkaline water electrolysis system", Trans Korean Hydrogen New Energy Soc., 28, 601 (2017).
  11. H. Cho, W. Cho, and C. Kim, "Low-temperature alkaline water electrolysis", J. Ind. Eng. Chem., 21, 23 (2018).
  12. M. J. Lavorante, C. Y. Reynoso, and J. I. Franco, "Water electrolysis with Zirfon(R) as separator and NaOH as electrolyte", Desalination Water Treat., 56, 3647 (2015).
  13. W.-Y. Chuang, T.-H. Young, D.-M. Wang, R.-L. Luo, and Y.-M. Sun, "Swelling behavior of hydrophobic polymers in water/ethanol mixtures", Polymer, 41, 8339 (2000).
  14. C. Y. Ahn and Y. H. Cho, "Pt-based electrode materials and triple phase boundary for polymer electrolyte membrane fuel cells", KIC News, 21, 41 (2018).
  15. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012).
  16. V. J. Vasudevan and J. E. McGrath, "Atomistic modeling of amorphous aromatic polybenzoxazoles", Macromolecules, 29, 637 (1996).
  17. J.-S. Lee, and C. H. Park, "Effect of types of force-fields on gas transport thorough polymer membrane", Membr. J., 29, 37 (2019).
  18. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OHcontaining polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014).
  19. C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019).
  20. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).
  21. K.-S. Chang, Y.-H. Huang, K.-R. Lee, and K.-L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci, 354, 93 (2010).
  22. H. Kang and C. H. Park, "Effect of Nafion(R) chain length on proton transport as a binder material", Membr. J., 30, 57 (2020).
  23. H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020).
  24. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).
  25. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 47 (2016).
  26. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998).
  27. J. Choi, J.-H. Jang, J. E. Chae, H.-Y. Park, S. Y. Lee, J. H. Jang, J. Y. Kim, D. Henkensmeier, S. J. Yoo, and K. Y. Lee, "Spirobiindane-based poly (arylene ether sulfone) ionomers for alkaline anion exchange membrane fuel cells", Macromol. Res., 28, 275-281 (2020). https://doi.org/10.1007/s13233-020-8036-x
  28. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953).
  29. C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of CO2/N2 in gas mixture n thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci, 528, 135 (2017).
  30. H. Lim, B. Lee, D. Yun, A. Z. Al Munsur, J. E. Chae, S. Y. Lee, H.-J. Kim, S. Y. Nam, C. H. Park, and T.-H. Kim, "Poly (2, 6-dimethyl-1, 4-phenylene oxide) s with various head groups: effect of head groups on the properties of anion exchange membranes", ACS Appl. Mater. Interfaces, 10, 41279 (2018).