DOI QR코드

DOI QR Code

Stress granules dynamics: benefits in cancer

  • Jeong In, Lee (Department of Biochemistry, Kangwon National University) ;
  • Sim, Namkoong (Department of Biochemistry, Kangwon National University)
  • Received : 2022.08.21
  • Accepted : 2022.10.17
  • Published : 2022.12.31

Abstract

Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy.

Keywords

Acknowledgement

We thank Dr. Junsoo Park and Dr. Sungjin Moon for comments on the manuscript. This work was supported by the grant from the National Research Foundation of Korea (NRF-2020R1C1C 1009253) and 2020 Research Grant from Kangwon National University given to SN.

References

  1. Anderson P and Kedersha N (2009) Stress granules. Curr Biol 19, R397-398
  2. Hofmann S, Cherkasova V, Bankhead P, Bukau B and Stoecklin G (2012) Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 23, 3786-3800 https://doi.org/10.1091/mbc.E12-04-0296
  3. Mahboubi H and Stochaj U (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis 1863, 884-895 https://doi.org/10.1016/j.bbadis.2016.12.022
  4. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A and Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487-498 https://doi.org/10.1016/j.cell.2015.12.038
  5. Namkoong S, Ho A, Woo YM, Kwak H and Lee JH (2018) Systematic characterization of stress-induced RNA granulation. Mol Cell 70, 175-187 e8
  6. Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR and Parker R (2017) The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68, 808-820 e5
  7. Cao X, Jin X and Liu B (2020) The involvement of stress granules in aging and aging-associated diseases. Aging Cell 19, e13136
  8. Protter DSW and Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26, 668-679 https://doi.org/10.1016/j.tcb.2016.05.004
  9. Ivanov P, Kedersha N and Anderson P (2019) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 11, a032813
  10. Lee CY and Seydoux G (2019) Dynamics of mRNA entry into stress granules. Nat Cell Biol 21, 116-117 https://doi.org/10.1038/s41556-019-0278-5
  11. Anderson P and Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7, 213-221 https://doi.org/10.1379/1466-1268(2002)007<0213:VSTROE>2.0.CO;2
  12. Wek RC, Jiang HY and Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34, 7-11
  13. Kedersha NL, Gupta M, Li W, Miller I and Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147, 1431-1442 https://doi.org/10.1083/jcb.147.7.1431
  14. Kedersha N, Chen S, Gilks N et al (2002) Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 13, 195-210 https://doi.org/10.1091/mbc.01-05-0221
  15. Mazroui R, Sukarieh R, Bordeleau ME et al (2006) Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell 17, 4212-4219 https://doi.org/10.1091/mbc.e06-04-0318
  16. Kim WJ, Kim JH and Jang SK (2007) Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. EMBO J 26, 5020-5032 https://doi.org/10.1038/sj.emboj.7601920
  17. Dang Y, Kedersha N, Low WK et al (2006) Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem 281, 32870-32878 https://doi.org/10.1074/jbc.M606149200
  18. Fujimura K, Sasaki AT and Anderson P (2012) Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 40, 8099-8110 https://doi.org/10.1093/nar/gks566
  19. Saxton RA and Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976 https://doi.org/10.1016/j.cell.2017.02.004
  20. Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P and Anderson P (2012) Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem Biophys Res Commun 423, 763-769 https://doi.org/10.1016/j.bbrc.2012.06.033
  21. Sfakianos AP, Mellor LE, Pang YF et al (2018) The mTOR-S6 kinase pathway promotes stress granule assembly. Cell Death Differ 25, 1766-1780 https://doi.org/10.1038/s41418-018-0076-9
  22. Cadena Sandoval M, Heberle AM, Rehbein U, Barile C, Ramos Pittol JM and Thedieck K (2021) mTORC1 cross-talk with stress granules in aging and age-related diseases. Front Aging 2, 761333
  23. Fournier MJ, Coudert L, Mellaoui S et al (2013) Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 33, 2285-2301
  24. Heberle AM, Razquin Navas P, Langelaar-Makkinje M et al (2019) The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Sci Alliance 2, e201800257
  25. Buchan JR, Kolaitis RM, Taylor JP and Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461-1474 https://doi.org/10.1016/j.cell.2013.05.037
  26. Wheeler JR, Matheny T, Jain S, Abrisch R and Parker R (2016) Distinct stages in stress granule assembly and disassembly. Elife 5, e18413
  27. Markmiller S, Soltanieh S, Server KL et al (2018) Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590-604 e13
  28. Song MS and Grabocka E (2020) Stress granules in cancer. Rev Physiol Biochem Pharmacol 14, 10.1007/112_2020_37
  29. Marcelo A, Koppenol R, de Almeida LP, Matos CA and Nobrega C (2021) Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis 12, 592
  30. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H and Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10, 1324-1332 https://doi.org/10.1038/ncb1791
  31. Thedieck K, Holzwarth B, Prentzell MT et al (2013) Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154, 859-874 https://doi.org/10.1016/j.cell.2013.07.031
  32. Moujaber O, Mahboubi H, Kodiha M et al (2017) Dissecting the molecular mechanisms that impair stress granule formation in aging cells. Biochim Biophys Acta Mol Cell Res 1864, 475-486 https://doi.org/10.1016/j.bbamcr.2016.12.008
  33. Omer A, Patel D, Lian XJ et al (2018) Stress granules counteract senescence by sequestration of PAI-1. EMBO Rep 19, e44722
  34. Decker CJ and Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4, a012286
  35. Wilbertz JH, Voigt F, Horvathova I, Roth G, Zhan Y and Chao JA (2019) Single-molecule imaging of mRNA localization and regulation during the integrated stress response. Mol Cell 73, 946-958 e7
  36. Ries RJ, Zaccara S, Klein P et al (2019) m(6)A enhances the phase separation potential of mRNA. Nature 571, 424-428 https://doi.org/10.1038/s41586-019-1374-1
  37. Fu Y and Zhuang X (2020) m6A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 16, 955-963 https://doi.org/10.1038/s41589-020-0524-y
  38. He L, Li H, Wu A, Peng Y, Shu G and Yin G (2019) Functions of N6-methyladenosine and its role in cancer. Mol Cancer 18, 176
  39. Khong A, Matheny T, Huynh TN, Babl V and Parker R (2022) Limited effects of m6A modification on mRNA partitioning into stress granules. Nat Commun 13, 3735
  40. Tourriere H, Chebli K, Zekri L et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160, 823-831 https://doi.org/10.1083/jcb.200212128
  41. Kedersha N, Panas MD, Achorn CA et al (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212, 845-860 https://doi.org/10.1083/jcb.201508028
  42. Yang P, Mathieu C, Kolaitis RM et al (2020) G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325-345 e28
  43. Wang Y, Fu D, Chen Y et al (2018) G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis 9, 501
  44. Zhang LN, Zhao L, Yan XL and Huang YH (2019) Loss of G3BP1 suppresses proliferation, migration, and invasion of esophageal cancer cells via Wnt/beta-catenin and PI3K/AKT signaling pathways. J Cell Physiol 234, 20469-20484 https://doi.org/10.1002/jcp.28648
  45. Li Y, Wang J, Zhong S, Li J and Du W (2020) Overexpression of G3BP1 facilitates the progression of colon cancer by activating betacatenin signaling. Mol Med Rep 22, 4403-4411
  46. Somasekharan SP, El-Naggar A, Leprivier G et al (2015) YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol 208, 913-929 https://doi.org/10.1083/jcb.201411047
  47. Zheng H, Zhan Y, Zhang Y et al (2019) Elevated expression of G3BP1 associates with YB1 and p-AKT and predicts poor prognosis in nonsmall cell lung cancer patients after surgical resection. Cancer Med 8, 6894-6903 https://doi.org/10.1002/cam4.2579
  48. El-Naggar AM, Somasekharan SP, Wang Y et al (2019) Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 20, e48375
  49. Park C, Choi S, Kim YE et al (2017) Stress granules contain Rbfox2 with cell cycle-related mRNAs. Sci Rep 7, 11211
  50. Choi S, Sa M, Cho N, Kim KK and Park SH (2019) Rbfox2 dissociation from stress granules suppresses cancer progression. Exp Mol Med 51, 1-12
  51. Reyes R, Alcalde J and Izquierdo JM (2009) Depletion of T-cell intracellular antigen proteins promotes cell proliferation. Genome Biol 10, R87
  52. Heck MV, Azizov M, Stehning T, Walter M, Kedersha N and Auburger G (2014) Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 15, 135-144 https://doi.org/10.1007/s10048-014-0397-x
  53. Sanchez-Jimenez C, Ludena MD and Izquierdo JM (2015) T-cell intracellular antigens function as tumor suppressor genes. Cell Death Dis 6, e1669
  54. Liu Y, Liu R, Yang F et al (2017) miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 16, 53
  55. Arimoto-Matsuzaki K, Saito H and Takekawa M (2016) TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun 7, 10252
  56. Aldana-Masangkay GI and Sakamoto KM (2011) The role of HDAC6 in cancer. J Biomed Biotechnol 2011, 875824
  57. Kwon S, Zhang Y and Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21, 3381-3394 https://doi.org/10.1101/gad.461107
  58. Gal J, Chen J, Na DY, Tichacek L, Barnett KR and Zhu H (2019) The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress granule dynamics. Mol Cell Biol 39, e00052-19
  59. Zhang SL, Zhu HY, Zhou BY et al (2019) Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway. Onco Targets Ther 12, 2409-2419 https://doi.org/10.2147/OTT.S194986
  60. Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R and Pelkmans L (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791-805 https://doi.org/10.1016/j.cell.2013.01.033
  61. Mediani L, Antoniani F, Galli V et al (2021) Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Rep 22, e51740
  62. Rao R, Fiskus W, Yang Y et al (2008) HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112, 1886-1893
  63. Ory B, Baud'huin M, Verrecchia F et al (2016) Blocking HSP90 addiction inhibits tumor cell proliferation, metastasis development, and synergistically acts with zoledronic acid to delay osteosarcoma progression. Clin Cancer Res 22, 2520-2533 https://doi.org/10.1158/1078-0432.CCR-15-1925
  64. Song KH, Oh SJ, Kim S et al (2020) HSP90A inhibition promotes anti-tumor immunity by reversing multi-modal resistance and stem-like property of immune-refractory tumors. Nat Commun 11, 562
  65. Yin L, Yang Y, Zhu W et al (2021) Heat shock protein 90 triggers multi-drug resistance of ovarian cancer via AKT/GSK3beta/beta-catenin signaling. Front Oncol 11, 620907
  66. Simanshu DK, Nissley DV and McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170, 17-33 https://doi.org/10.1016/j.cell.2017.06.009
  67. Redding A, Aplin AE and Grabocka E (2022) RAS-mediated tumor stress adaptation and the targeting opportunities it presents. Dis Model Mech 15, dmm049280
  68. Grabocka E and Bar-Sagi D (2016) Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 167, 1803-1813 e12
  69. Fournier MJ, Gareau C and Mazroui R (2010) The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int 10, 12
  70. Kaehler C, Isensee J, Hucho T, Lehrach H and Krobitsch S (2014) 5-Fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res 42, 6436-6447 https://doi.org/10.1093/nar/gku264
  71. Park YJ, Choi DW, Cho SW, Han J, Yang S and Choi CY (2020) Stress granule formation attenuates RACK1-mediated apoptotic cell death induced by morusin. Int J Mol Sci 21, 5360
  72. Adjibade P, Simoneau B, Ledoux N et al (2020) Treatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formation. PLoS One 15, e0231894
  73. Shi Q, Zhu Y, Ma J et al (2019) Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol Cancer 18, 170
  74. Timalsina S, Arimoto-Matsuzaki K, Kitamura M et al (2018) Chemical compounds that suppress hypoxia-induced stress granule formation enhance cancer drug sensitivity of human cervical cancer HeLa cells. J Biochem 164, 381-391 https://doi.org/10.1093/jb/mvy062
  75. Attwood KM, Robichaud A, Westhaver LP et al (2020) Raloxifene prevents stress granule dissolution, impairs translational control and promotes cell death during hypoxia in glioblastoma cells. Cell Death Dis 11, 989
  76. Zhao J, Fu X, Chen H et al (2021) G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer. Br J Cancer 124, 425-436 https://doi.org/10.1038/s41416-020-01067-1
  77. Cho E, Than TT, Kim SH et al (2019) G3BP1 depletion increases radiosensitisation by inducing oxidative stress in response to DNA damage. Anticancer Res 39, 6087-6095 https://doi.org/10.21873/anticanres.13816
  78. Weipoltshammer K, Schofer C, Almeder M et al (1999) Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA. J Cell Biol 147, 1409-1418 https://doi.org/10.1083/jcb.147.7.1409
  79. Gilks N, Kedersha N, Ayodele M et al (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15, 5383-5398 https://doi.org/10.1091/mbc.E04-08-0715
  80. Dewey CM, Cenik B, Sephton CF et al (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31, 1098-1108 https://doi.org/10.1128/MCB.01279-10
  81. Do TQ, Gaudreau-Lapierre A, Palii CG et al (2020) A nuclear stress pathway that parallels cytoplasmic stress granule formation. iScience 23, 101664
  82. Fu X, Gao X, Ge L et al (2016) Malonate induces the assembly of cytoplasmic stress granules. FEBS Lett 590, 22-33 https://doi.org/10.1002/1873-3468.12049
  83. Stoecklin G, Stubbs T, Kedersha N et al (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23, 1313-1324 https://doi.org/10.1038/sj.emboj.7600163
  84. Fujimura K, Kano F and Murata M (2008) Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies. RNA 14, 425-431 https://doi.org/10.1261/rna.780708
  85. Mazroui R, Di Marco S, Kaufman RJ and Gallouzi IE (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18, 2603-2618 https://doi.org/10.1091/mbc.E06-12-1079
  86. Seguin SJ, Morelli FF, Vinet J et al (2014) Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 21, 1838-1851 https://doi.org/10.1038/cdd.2014.103
  87. Thomas MG, Martinez Tosar LJ, Loschi M et al (2005) Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell 16, 405-420
  88. Buchan JR, Yoon JH and Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124, 228-239 https://doi.org/10.1242/jcs.078444
  89. Herman AB, Silva Afonso M, Kelemen SE et al (2019) Regulation of stress granule formation by inflammation, vascular injury, and atherosclerosis. Arterioscler Thromb Vasc Biol 39, 2014-2027 https://doi.org/10.1161/ATVBAHA.119.313034
  90. Slaine PD, Kleer M, Smith NK, Khaperskyy DA and McCormick C (2017) Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza a virus replication. Viruses 9, 388
  91. Henderson KA, Kobylewski SE, Yamada KE and Eckhert CD (2015) Boric acid induces cytoplasmic stress granule formation, eIF2alpha phosphorylation, and ATF4 in prostate DU-145 cells. Biometals 28, 133-141 https://doi.org/10.1007/s10534-014-9809-5
  92. Moeller BJ, Cao Y, Li CY and Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429-441 https://doi.org/10.1016/S1535-6108(04)00115-1
  93. Ying S and Khaperskyy DA (2020) UV damage induces G3BP1-dependent stress granule formation that is not driven by mTOR inhibition-mediated translation arrest. J Cell Sci 133, jcs248310
  94. Deng C, Ji X, Rainey C, Zhang J and Lu W (2020) Integrating machine learning with human knowledge. iScience 23, 101656
  95. Adjibade P, St-Sauveur VG, Quevillon Huberdeau M et al (2015) Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells. Oncotarget 6, 43927-43943 https://doi.org/10.18632/oncotarget.5980
  96. Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P and Ivanov P (2016) Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget 7, 30307-30322 https://doi.org/10.18632/oncotarget.8728
  97. Pietras P, Aulas A, Fay MM et al (2022) Translation inhibition and suppression of stress granules formation by cisplatin. Biomed Pharmacother 145, 112382
  98. Vilas-Boas Fde A, da Silva AM, de Sousa LP et al (2016) Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol 127, 253-260 https://doi.org/10.1007/s11060-015-2043-3
  99. Gareau C, Fournier MJ, Filion C et al (2011) p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 6, e20254