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EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED

LAPLACIAN PROBLEMS WITH A PARAMETER

Chan-Gyun Kim

Abstract. In this paper, we study singular Dirichlet boundary value

problems involving ϕ-Laplacian. Using fixed point index theory, the ex-

istence of positive solutions is established under the assumption that the
nonlinearity f = f(u) has a positive falling zero and is either superlinear

or sublinear at u = 0.

1. Introduction

In this paper, we study the existence of positive solutions to the following
boundary value problem{

(q(t)ϕ(u′(t)))′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1)

where ϕ : R → R is an odd increasing homeomorphism, q ∈ C([0, 1], (0,∞)),
λ ∈ R+ := [0,∞) is a parameter, h ∈ C((0, 1),R+) and f ∈ C(R+,R).

By a solution u to problem (1), we mean u ∈ C1(0, 1)∩C[0, 1] with wϕ(u′) ∈
C1(0, 1) satisfies (1). Problem (1) arises naturally in studying radial solutions
to the following quasilinear elliptic equation defined on an annular domain{

div(w(|x|)A(|∇v|)∇v) + λk(|x|)f1(v) = 0 in Ω,

v = 0 on ∂Ω,
(2)

where Ω = {x ∈ RN : R1 < |x| < R2} with N ≥ 2 and 0 < R1 < R2 < ∞,
w ∈ C([R1, R2], (0,∞)), k ∈ C((R1, R2),R+) and f1 ∈ C(R+,R). Indeed,
applying change of variables

v(x) = (R2 −R1)u(t) and |x| = (R2 −R1)t+R1 =: r(t),
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problem (2) is transformed into problem (1) with ϕ(s) = A(|s|)s, q(t) =
w(r(t))rN−1(t), h(t) = (R2 − R1)rN−1(t)k(r(t)) and f(u) = f1((R2 − R1)u)
(see, e.g., [4, 18]). Thus, the existence of positive solutions to problem (1)
guarantees the existence of positive radial solutions to problem (2).

Throughout this paper, we assume that the odd increasing homeomorphism
ϕ satisfies the following assumption

(F1) there exist increasing homeomorphisms ψ1, ψ2 : R+ → R+ such that

ϕ(x)ψ1(y) ≤ ϕ(yx) ≤ ϕ(x)ψ2(y) for all x, y ∈ R+. (3)

For example, define ϕ : R→ R to be an odd function with

(i) ϕ(x) = x2

1+x or (ii) ϕ(x) = x+ x2 for x ∈ R+.

Then it is easy to check that (F1) is satisfied with

ψ1(y) = min{y, y2} and ψ2(y) = max{y, y2}.
Let us introduce notations

f0 := lim
s→0+

f(s)

ϕ(s)
, f∞ := lim

s→∞

f(s)

ϕ(s)

and, for an increasing homeomorphism ξ on R+,

Hξ :=
{
g ∈ C((0, 1),R+) :

∫ 1

0

∣∣∣ξ−1 (∫ 1
2

s
g(τ)dτ

)∣∣∣ ds <∞}.

Now we give a list of assumptions which will be used in this paper.

(F2) h ∈ Hϕ \ {0}.
(F ′2) h ∈ Hψ1 \ {0}.
(F3) there exists M > 0 such that f(s) > 0 for s ∈ (0,M) and f(M) = 0.
(F4) f0 =∞.
(F ′4) f0 = 0.

From (F1), it follows that

ϕ−1(x)ψ−12 (y) ≤ ϕ−1(xy) ≤ ϕ−1(x)ψ−11 (y) for all x, y ∈ R+ (4)

and

L1(0, 1) ∩ C(0, 1) ⊆ Hψ1 ⊆ Hϕ ⊆ Hψ2

(see, e.g., ([4], Remark 1)). Thus, the assumption (F ′2) is stronger than the one
(F2). For example, let ϕ(x) = x+ x2 for x ∈ R+, and define h : (0, 1)→ R+ by

h(t) = t−c( 3
4 − t) for t ∈ (0, 34 ) and h(t) = 0 for t ∈ [ 34 , 1] and

From the facts that ψ−11 (s) = s and ϕ−1(s) = −1+
√
1+4s

2 for all s ≥ 1, it follows

that h ∈ Hψ1 \ L1(0, 1) for any c ∈ [1, 2) and t−2 ∈ Hϕ \ Hψ1 .
We introduce two assumptions on ϕ which are equivalent to (F1):

(H1) there exists an increasing homeomorphism ψ1 : R+ → R+ such that

ϕ(x)ψ1(y) ≤ ϕ(xy) for all x, y ∈ R+;

(H1′) there exist an increasing homeomorphism ψ1 : R+ → R+ and a function
χ : R+ → R+ such that

ϕ(x)ψ1(y) ≤ ϕ(xy) ≤ ϕ(x)χ(y) for all x, y ∈ R+.
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It looks like that the assumption (H1) is more general than the ones (H1′)
and (F1), but all the assumptions on ϕ are identical (see [4]). To be more
specific, if we assume that (H1) holds, then we can define an increasing home-
omorphism ψ2 which satisfies the second inequality in the assumption (F1).
Indeed, let us define ψ2 : R+ → R+ by

ψ2(0) := 0 and ψ2(y) :=
(
ψ1(y−1)

)−1
for y > 0.

Then ψ2 is an increasing homeomorphism on R+. From (H1), it follows that

0 < ϕ(xy)ψ1(y−1) ≤ ϕ(x) for x, y > 0.

Consequently, ϕ(xy) ≤ ϕ(x)
(
ψ1(y−1)

)−1
= ϕ(x)ψ2(y) for all x, y ∈ R+, and

all the assumptions on ϕ above are identical.
Over recent decades, the existence of positive solutions to p-Laplacian or

more generalized Laplacian problems have been extensively studied (see, e.g.,
[1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). For example, for ϕ(s) =
|s|p−2s with p > 1, h ∈ Hϕ and q ≡ 1, the existence and multiplicity of positive
solutions to problem (1) under various assumptions on f0 and f∞ were studied
in [1]. When f(s) satisfies f(0) > 0 and f∞ =∞, in [10], it was shown that there
exists λ∗ > 0 such that (1) has at least two positive solutions for λ ∈ (0, λ∗), one
positive solution for λ = λ∗ and no positive solution for λ > λ∗. Recently, under
the assumptions that h ∈ C1((0, 1], (0,∞)) is strictly decreasing, h(t) ≤ Ct−η

for some C > 0 and η ∈ (0, 1), in [16], the conditions on the nonlinearity
f = f(u) was investigated which ensure the uniqueness of positive solution to
problem (1) for all large λ > 0.

For ϕ satisfying (H1), in [6], the existence of positive solutions of the one
dimensional differential equation with deviating arguments was studied. In [15],
when ϕ satisfies (H1′), q ≡ 1, h ∈ Hψ1 and either f0 = f∞ =∞ or f0 = f∞ = 0,
it was shown that there exist λ∗ ≥ λ∗ > 0 such that (1) has at least two positive
solutions for λ ∈ (0, λ∗), one positive solution for λ ∈ [λ∗, λ

∗] and no positive
solution for λ > λ∗ under the assumption that h ∈ Hψ1

and f0 = f∞ = ∞,.
In [4], for nonnegative nonlinearity f = f(t, u) satisfying f(t0, 0) > 0 for some
t0 ∈ [0, 1] and h ∈ Hϕ, the existence of an unbounded solution component C was
shown and, the existence, nonexistence and multiplicity of positive solutions
were studied by investigating the shape of C depending on the behavior of
f = f(t, u) at u =∞.

We give some examples of f = f(u) satisfying either (F3) and (F4) or (F3)
and (F ′4). Define f : R+ → R by

f(u) = [ϕ(u)]d(1− u) for u ∈ R+.

Then if d ∈ (0, 1), then the nonlinearity f = f(u) satisfies (F3) and (F4); if
d ∈ (1,∞), then it satisfies (F3) and (F ′4).

To the author’s knowledge, there is no existence results for positive solutions
to generalized Laplacian problem (1) under the assumptions that the weight
function h admits stronger singularity than L1(0, 1) at t = 0 and/or t = 1, and
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the nonlinearity f = f(u) satisfies (F3), i.e., it has a positive falling zero. The
following is the main result in this paper.

Theorem 1.1. Assume that (F1), (F ′2) and (F3) hold.

(i) Assume, in addition, that (F4) holds. Then problem (1) has a positive
solution u(λ) for any λ ∈ (0, R1(M)) satisfying ‖uλ‖∞ → 0 as λ→ 0+.
Here, R1 is the function which will be defined in Section 3.

(ii) Assume, in addition, that (F ′4) is assumed. Then there exists λ∗ > 0
such that problem (1) has a positive solution u(λ) for any λ ∈ (λ∗,∞)
satisfying ‖uλ‖∞ → 0 as λ→∞.

The rest of this paper is organized as follows. In Section 2, we give prelim-
inary results which are essential for proving the main result (Theorem 1.1) in
this paper. In Section 3, the main result is proved.

2. Preliminaries

Throughout this section, we assume that (F1), (F2) and f ∈ C(R+,R+) hold.
The usual maximum norm in a Banach space C[0, 1] is denoted by

‖u‖∞ := max
t∈[0,1]

|u(t)| for u ∈ C[0, 1].

αh := inf{x ∈ (0, 1) : h(x) > 0}, βh := sup{x ∈ (0, 1) : h(x) > 0},
ᾱh := sup{x ∈ (0, 1) : h(y) > 0 for all y ∈ (αh, x)},
β̄h := inf{x ∈ (0, 1) : h(y) > 0 for all y ∈ (x, βh)},

γ1h :=
1

4
(3αh + ᾱh), and γ2h :=

1

4
(β̄h + 3βh).

Then, since h ∈ C((0, 1),R+) \ {0}, we have two cases: either

(i) 0 ≤ αh < ᾱh ≤ β̄h < βh ≤ 1

or

(ii) 0 ≤ αh = β̄h < βh ≤ 1 and 0 ≤ αh < ᾱh = βh ≤ 1.

Consequently,

h(t) > 0 for t ∈ (αh, ᾱh) ∪ (β̄h, βh), and 0 ≤ αh < γ1h < γ2h < βh ≤ 1. (5)

Let ρh := ρ1 min{γ1h, 1− γ2h} ∈ (0, 1), where

q0 := min
t∈[0,1]

q(t) > 0 and ρ1 := ψ−12

(
1

‖q‖∞

)[
ψ−11

(
1

q0

)]−1
∈ (0, 1].

Then
K := {u ∈ C([0, 1],R+) : u(t) ≥ ρh‖u‖∞ for t ∈ [γ1h, γ

2
h]}

is a cone in C[0, 1]. For r > 0, let Kr := {u ∈ K : ‖u‖∞ < r}, ∂Kr := {u ∈
K : ‖u‖∞ = r} and Kr := Kr ∪ ∂Kr.

For g ∈ Hϕ, consider the following problem{
(q(t)ϕ(u′(t)))′ + g(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0.
(6)
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Define a function T : Hϕ → C[0, 1] by T (0) = 0 and, for g ∈ Hϕ \ {0},

T (g)(t) =


∫ t
0
ϕ−1

(
1
q(s)

∫ σ
s
g(τ)dτ

)
ds, if 0 ≤ t ≤ σ,∫ 1

t
ϕ−1

(
1
q(s)

∫ s
σ
g(τ)dτ

)
ds, if σ ≤ t ≤ 1,

(7)

where σ = σ(g) is a constant satisfying∫ σ

0

ϕ−1
(

1

q(s)

∫ σ

s

g(τ)dτ

)
ds =

∫ 1

σ

ϕ−1
(

1

q(s)

∫ s

σ

g(τ)dτ

)
ds. (8)

For any g ∈ Hϕ and any σ satisfying (8), T (g) is monotone increasing on [0, σ)
and monotone decreasing on (σ, 1]. We notice that σ = σ(g) is not necessarily
unique, but T (g) is independent of the choice of σ satisfying (8) (see, e.g., [18]
or [5, Remark 2]).

Lemma 2.1. ([4, Lemma 1 and Lemma 2]) Assume that (F1), (F2) and g ∈ Hϕ
hold. Then T (g) is a unique solution to problem (6) satisfying the follow-
ing properties:

(i) T (g)(t) ≥ 0 for t ∈ [0, 1];
(ii) σ is a constant satisfying (8) if and only if T (g)(σ) = ‖T (g)‖∞;

(iii) T (g)(t) ≥ ρ1 min{t, 1− t}‖T (g)‖∞ for t ∈ [0, 1] and T (g) ∈ K.

Define a function F : R+ ×K → C(0, 1) by

F (λ, u)(t) := λh(t)f(u(t)) for (λ, u) ∈ R+ ×K and t ∈ (0, 1).

Clearly, F (λ, u) ∈ Hϕ for any (λ, u) ∈ R+ ×K, since h ∈ Hϕ. Let us define an
operator H : R+ ×K → K by

H(λ, u) := T (F (λ, u)) for (λ, u) ∈ R+ ×K.

By Lemma 2.1 (iii), H(R+ ×K) ⊆ K and consequently, H is well defined.

H(λ, u)(σ) = ‖H(λ, u)‖∞ > 0 for any (λ, u) ∈ (0,∞)×K.

Moreover, u is a positive solution to problem (1) if and only if H(λ, u) = u for
some (λ, u) ∈ (0,∞)×K.

By the argument similar to those in the proof of [1, Lemma 3] or [11, Lemma
2.4], one can prove the following lemma.

Lemma 2.2. ([4, Lemma 4]) Assume that (F1), (F2) and f ∈ C([0, 1]×R+,R+)
hold. Then the operator H : R+ ×K → K is completely continuous.

Finally, we recall a well-known theorem of the fixed point index theory.

Theorem 2.3. ([2, 3]) Assume that, for some r > 0, H : Kr → K is completely
continuous. Then the following assertions are true.

(i) i(H,Kr,K) = 1 if ‖H(u)‖∞ < ‖u‖∞ for u ∈ ∂Kr;
(ii) i(H,Kr,K) = 0 if ‖H(u)‖∞ > ‖u‖∞ for u ∈ ∂Kr.
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3. Main results

Throughout this section, we assume that (F1) and (F2) hold, and that

(F ′3) f ∈ C(R+,R+) and there exists M > 0 such that f(s) > 0 for s ∈
(0,M),

unless otherwise stated. Let

C1 := ψ−11

(
1

q0

)
max

{∫ γh

0

ψ−11

(∫ γh

s

h(τ)dτ

)
ds,

∫ 1

γh

ψ−11

(∫ s

γh

h(τ)dτ

)
ds

}
and

C2 := ψ−12

(
1

‖q‖∞

)
min

{∫ γh

γ1
h

ψ−12

(∫ γh

s

h(τ)dτ

)
ds,

∫ γ2
h

γh

ψ−12

(∫ s

γh

h(τ)dτ

)
ds

}
.

Here, γh :=
γ1h + γ2h

2
. Clearly, by (5), C1 > 0 and C2 > 0.

Define continuous functions R1, R2 : (0,M)→ (0,∞) by

R1(m) := ψ1(C−11 )
ϕ(m)

f∗(m)
and R2(m) := ψ2(C−12 )

ϕ(m)

f∗(m)
for m ∈ (0,∞).

Here, f∗(m) := max{f(x) : 0 ≤ x ≤ m} and f∗(m) := min{f(x) : ρhm ≤ x ≤ m}.

Remark 1. (1) By (3) and (4),

ψ1(x) ≤ ψ2(x) and ψ−12 (x) ≤ ψ−11 (x) for all x ∈ R+.

Consequently,

0 < C2 < C1 and 0 < R1(m) < R2(m) for all m ∈ (0,M).

Assume that (F3) holds. Then

lim
m→M−

R1(m) =
1

f̂
ϕ

(
M

C1

)
=: R1(M) and lim

m→M−
R2(m) =∞.

Here, f̂ := max{f(s) : 0 ≤ s ≤M}.
(2) It is well known that

(i) lim
m→0+

f∗(m)

ϕ(m)
= lim
m→0+

f∗(m)

ϕ(m)
= 0 if f0 = 0,

(ii) lim
m→0+

f∗(m)

ϕ(m)
= lim
m→0+

f∗(m)

ϕ(m)
=∞ if f0 =∞

(see. e.g., [12, Remark 2]). Consequently, for i ∈ {1, 2},
lim

m→0+
Ri(m) =∞ if f0 = 0, and lim

m→0+
Ri(m) = 0 if f0 =∞.

The following lemma can be proved by the argument similar to those in the
proofs of [12, Lemma 3 and Lemma 4]. For the reader’s convenience, we give
the proof of it in details.

Lemma 3.1. Assume that (F1), (F ′2) and (F ′3) hold. Let m ∈ (0,M) be fixed.

(i) For any λ ∈ (0, R1(m)), ‖H(λ, v)‖∞ < ‖v‖∞ for all v ∈ ∂Km and

i(H(λ, ·),Km,K) = 1. (9)
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(ii) For any λ ∈ (R2(m),∞), ‖H(λ, v)‖∞ > ‖v‖ for all v ∈ ∂Km and

i(H(λ, ·),Km,K) = 0. (10)

Proof. (i) Let λ ∈ (0, R1(m)) and v ∈ ∂Km be fixed. Then, for t ∈ [0, 1],

0 ≤ λf(v(t)) ≤ λf∗(m) =
λ

R1(m)
ϕ(m)ψ1(C−11 ) < ϕ(m)ψ1(C−11 ). (11)

Let σ be a number satisfying H(λ, v)(σ) = ‖H(λ, v)‖∞. We have two cases:
either (i) σ ∈ (0, γh) or (ii) σ ∈ [γh, 1). We only consider the case (i) since the
case (ii) can be proved in a similar manner. From (4),(11) and the definition
of C1, it follows that

‖H(λ, v)‖∞ =

∫ σ

0

ϕ−1
(

1

q(s)

∫ σ

s

λh(τ)f(v(τ))dτ

)
ds

<

∫ γh

0

ϕ−1
(∫ γh

s

h(τ)dτq−10 ϕ(m)ψ1(C−11 )

)
ds

≤
∫ γh

0

ψ−11

(∫ γh

s

h(τ)dτ

)
dsϕ−1

(
q−10 ϕ(m)ψ1(C−11 )

)
≤

∫ γh

0

ψ−11

(∫ γh

s

h(τ)dτ

)
dsψ−11

(
q−10

)
ϕ−1

(
ϕ(m)ψ1(C−11 )

)
≤ C1mC−11 = m = ‖v‖∞.

By Theorem 2.3, (9) holds for any λ ∈ (0, R1(m)).
(ii) Let λ ∈ (R2(m),∞) and v ∈ ∂Km be fixed. Then

ρhm ≤ v(t) ≤ m for t ∈ [γ1h, γ
2
h],

and

λf(v(t)) ≥ λ

R2(m)
ϕ(m)ψ2(C−12 ) > ϕ(m)ψ2(C−12 ) for t ∈ [γ1h, γ

2
h]. (12)

Let σ be a constant satisfying H(λ, v)(σ) = ‖H(λ, v)‖∞. Then we have two
cases: either (i) σ ∈ [γh, 1) or (ii) σ ∈ (0, γh). We only consider the case (i)
since the case (ii) can be dealt in a similar manner. It follows from (4), (12)
and the definition of C2 that

‖H(λ, v)‖∞ =

∫ σ

0

ϕ−1
(

1

q(s)

∫ σ

s

λh(τ)f(v(τ))dτ

)
ds

>

∫ γh

γ1
h

ϕ−1
(∫ γh

s

h(τ)dτ‖q‖−1∞ ϕ(m)ψ2(C−12 )

)
ds

≥
∫ γh

γ1
h

ψ−12

(∫ γh

s

h(τ)dτ

)
dsϕ−1

(
‖q‖−1∞ ϕ(m)ψ2(C−12 )

)
≥

∫ γh

γ1
h

ψ−12

(∫ γh

s

h(τ)dτ

)
dsψ−12

(
‖q‖−1∞

)
ϕ−1

(
ϕ(m)ψ2(C−12 )

)
≥ C2mC−12 = m = ‖v‖∞.
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By Theorem 2.3, (10) holds for any λ ∈ (R2(m),∞).
�

The following theorem can be proved easily in view of Lemma 3.1 and the
fixed point index theory. Thus, we omit the proof of it.

Theorem 3.2. Assume that (F1), (F ′2) and (F ′3) hold. Assume, in addition,
that there exist m1 and m2 such that 0 < m1 < m2 < M (resp., 0 < m2 < m1 <
M) and R2(m2) < R1(m1). Then (1) has a positive solution u = u(λ) satisfying
m1 < ‖u‖∞ < m2 (resp., m2 < ‖u‖∞ < m1) for any λ ∈ (R2(m2), R1(m1)).

Now we give the proof of Theorem 1.1.
Proof of Theorem 1.1. Consider the following modified problem{

(q(t)ϕ(u′(t)))′ + λh(t)f̄(u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(13)

where

f̄(s) =

{
0, for (s) ∈ [M,∞),
f(s), for (s) ∈ [0,M).

Then, by (F3), f1 satisfies the assumption (F ′3).
(i) Assume that f0 =∞. By Remark 1, for i = 1, 2, Ri(m)→ 0 as m→ 0+,

and R2(m) → ∞ and R1(m) → R1(M) as m → M−. Let λ ∈ (0, R1(M)) be
fixed. Then there exist m1(λ) and m2(λ) such that

0 < m2(λ) < m1(λ) < M and R2(m2(λ)) < λ < R1(m1(λ)).

By Theorem 3.2, there exists a positive solution uλ to problem (13) (equiv-
alently, problem (1)) satisfying m2(λ) < ‖uλ‖∞ < m1(λ) < M. Since 0 <
R1(m) < R2(m) for all m ∈ (0,M) and R1(m) → 0 as m → 0, we may choose
m1(λ) and m2(λ) such that mi(λ) → 0 as λ → 0+ for i = 1, 2. Consequently,
we can choose positive solutions uλ to problem (1) for small λ > 0 satisfying
‖uλ‖∞ → 0 as λ→ 0+.

(ii) Assume that f0 = 0. By Remark 1, Ri(m)→∞ as m→ 0+ for i = 1, 2
and R2(m) → ∞ as m → M−. Consequently, there exists λ∗ := min{R1(m) :
m ∈ (0,M)} ∈ (0,∞). Let λ ∈ (λ∗,∞) be fixed. Then there exist m1(λ) and
m2(λ) such that

0 < m1(λ) < m2(λ) < M and R2(m2(λ)) < λ < R1(m1(λ)).

By Theorem 3.2, there exists a positive solution uλ to problem (13) (equiva-
lently, problem (1)) satisfying m1(λ) < ‖uλ‖∞ < m2(λ) < M. Since Ri(m) →
∞ as m→ 0+ for i = 1, 2, we may choose m1(λ) and m2(λ) so that mi(λ)→ 0
as λ → ∞. Consequently, we can choose positive solutions uλ to problem (1)
for large λ > 0 satisfying ‖uλ‖∞ → 0 as λ→∞.
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