East Asian Math. J.
Vol. 38 (2022), No. 1, pp. 043-063
YNMS
http://dx.doi.org/10.7858/eamj.2022.005

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

U-Hang Ki and Soo Jin Kim*

Abstract

Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (ϕ, ξ, η, g) in a complex space form $M_{n+1}(c)$. We denote by R_{ξ} the structure Jacobi operator with respect to the structure vector field ξ and by \bar{r} the scalar curvature of M. Suppose that R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel and at the same time the third fundamental form t satisfies $d t(X, Y)=2 \theta g(\phi X, Y)$ for a scalar $\theta(\neq 2 c)$ and any vector fields X and Y on M

In this paper, we prove that if it satisfies $R_{\xi} \phi=\phi R_{\xi}$, then M is a Hopf hypersurface of type (A) in $M_{n+1}(c)$ provided that $\bar{r}-2(n-1) c \leq 0$.

1. Introduction

A submanifold M is called a $C R$ submanifold of a Kaehlerian manifold \tilde{M} with complex structure J if there exists a differentiable distribution \triangle : $p \rightarrow \triangle_{p} \subset T_{p} M$ on M such that \triangle is J-invariant and the complementary orthogonal distribution Δ^{\perp} is totally real, where $T_{p} M$ denotes the tangent space at each point p in M ([1], [35]). In particular, M is said to be a semiinvariant submanifold provided that $\operatorname{dim} \triangle^{\perp}=1$. The unit normal in $J \Delta^{\perp}$ is called the distinguished normal to the semi-invariant submanifold ([4], [33]). In this case, M admits an almost contact metric structure (ϕ, ξ, η, g). A typical example of a semi-invariant submanfold is real hypersurfaces in a Kaehlerian manifold. And new examples of nontrivial semi-invariant submanifolds in a complex projective space $P_{n} \mathbb{C}$ are constructed in [22] and [30]. Accordingly, we may expect to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold.

An n-dimensional complex space form $M_{n}(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature $4 c$. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbb{C}$, or a complex hyperbolic space $H_{n} \mathbb{C}$ according as $c>0$ or $c<0$.

[^0]For the real hypersurface of $M_{n}(c), c \neq 0$, many results are known ([6]~[8], $[24] \sim[26],[31],[32]$, etc.). One of them, Takagi ([31], [32]) classified all the homogeneous real hypersurfaces of $P_{n} \mathbb{C}$ as six model spaces which are said to be A_{1}, A_{2}, B, C, D and E , and Cecil-Ryan ([5]) and Kimura ([23]) proved that they are realized as the tubes of constant radius over Kaehlerian submanifolds when the structure vector field ξ is principal.

On the other hand, real hypersurfaces in $H_{n} \mathbb{C}$ have been investigated by Berndt [2], Berndt and Tamura [3], Montiel and Romero [21] and so on. Berndt [2] classified all real hypersurfaces with constant principal curvatures in $H_{n} \mathbb{C}$ and showed that they are realized as the tubes of constant radius over certain submanifolds. Also such kinds of tubes are said to be real hypersurfaces of type A_{0}, A_{1}, A_{2} or type B.

Let M be a real hypersurface of type A_{1} or type A_{2} in a complex projective space $P_{n} \mathbb{C}$ or that of type A_{0}, A_{1} or A_{2} in a complex hyperbolic space $H_{n} \mathbb{C}$. Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type (A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex space form $M_{n}(c)$ were started by Okumura ([26]) for $c>0$ and Montiel and Romero ([24]) for $c<0$, respectively. They proved the following :

Theorem 1.1. Let M be a real hypersurface of $M_{n}(c), n \geq 2$. If it satisfies $A \phi=\phi A$, then M is locally congruent to one of the following hypersurface :
(I) in case that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-$ $2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
(II) in case that $M_{n}(c)=H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.
Denoting by R the curvature tensor of the submanifold, we define the Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ with respect to the structure vector ξ. Then R_{ξ} is a self adjoint endomorphism on the tangent space of a $C R$ submanifold.

Using several conditions on the structure Jacobi operator R_{ξ}, characterization problems for real hypersurfaces of type (A) have recently studied (cf. [7], [11], [18]). In the provious paper [7], Cho and one of the present authors gave another characterization of real hypersurface of type (A) in a complex projective space $P_{n} \mathbb{C}$. Namely they prove the following :

Theorem 1.2. Let M be a connected real hypersurface of $P_{n} \mathbb{C}$. If it satisfies (1) $R_{\xi} A \phi=\phi A R_{\xi}$ or (2) $R_{\xi} \phi=\phi R_{\xi}, R_{\xi} A=A R_{\xi}$, then M is of type (A), where A denotes the shape operator of M.

On the other hand, semi-invariant submanifolds of codimension 3 in a complex space form $M_{n+1}(c)$ have been studied in [9], [12] $\sim[15],[17],[19] \sim[22]$ and so on by using properties of induced almost contact metric structure and those of the third fundamental form of the submanifold.

Now, let M be a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ such that the third fundamental form t satisfies $d t(X, Y)=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$, where $\omega(X, Y)=g(\phi X, Y)$ for any vector fields X and Y on M. We denote by A and S the shape operator in the direction of the distinguished normal and the Ricci tensor of M, respectively.

In the preceding work [22], it is proved that the submanifold M above is a Hopf hypersurface in $P_{n} \mathbb{C}$ provided that $A \xi=\alpha \xi$ and $\theta-2 c<0$ for $c>0$.

Further, Ki and Song ([21]) proved that if it satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $S \xi=g(S \xi, \xi) \xi$, then M is a Hopf hypersurface of type (A) in $M_{n}(c)$ provided that the scalar curvature \bar{r} of M holds $\bar{r}-2(n-1) c \leq 0$. This is a semi-invariant version of the main theorem stated in [18].

Moreover, one of the present authors and Kurihara [17] proved also that if it satisfies $\nabla_{\xi} R_{\xi}=0$ and at the same time $R_{\xi} A=A R_{\xi}$, then M is the same time type as above.

In this paper, we consider a semi-invariant submanifold of codimension 3 in $M_{n}(c)$, satisfying $R_{\xi} \phi=\phi R_{\xi}$ and that R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel. In this case, we prove that M is a Hopf hypersurface of type (A) provided that the scalar curvature \bar{r} of M holds $\bar{r}-2(n-1) c \leq 0$.

All manifolds in the present paper are assumed to be connected and of class C^{∞} and the semi-invariant are supposed to be orientable.

2. Preliminaries

Let \tilde{M} be a real $2(n+1)$-dimensional Kaehlerian manifold equipped with parallel almost complex structure J and a Riemannian metric tensor G which is J-Hermitian. Let M be a real $(2 n-1)$-dimensional Riemannian manifold isometrically immersed in \tilde{M} by the immersion $i: M \rightarrow \bar{M}$. In the sequel we identify $i(M)$ with M itself. We denote by g the Riemannian metric tensor on M from that of \tilde{M}.

We denote by $\tilde{\nabla}$ the operator of covariant differentiation with respect to the metric tensor G on \tilde{M} and by ∇ the one on M. Then the Gauss formulas are given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) C+g(K X, Y) D+g(L X, Y) E \tag{2.1}
\end{equation*}
$$

for any vector fields X and Y tangent to M and any mutually orthogonal vectors C, D and E normal to M, where A, K and L are the second fundamental forms with respect to C, D and E respectively.

In the following we consider that M is a real $(2 n-1)$-dimensional semiinvariant submanifold of codimension 3 in \tilde{M} of real dimension $2(n+1)$. Then we can choose a local orthonormal frame field

$$
\left\{e_{1}, \cdots, e_{n-1}, J e_{1}, \cdots, J e_{n-1}, e_{0}=\xi, J \xi=C, D=J E, E\right\}
$$

on the tangent bundle $T \tilde{M}$ such that $e_{1}, \cdots, e_{n-1}, J e_{1}, \cdots, J e_{n-1}, \xi \in T M$ and $C, D, E \in T^{\perp} M$, where $T^{\perp} M$ is the normal bundle (cf. [14], [17]). Then equations of Weingarten are also given by

$$
\begin{gather*}
\tilde{\nabla}_{X} C=-A X+l(X) D+m(X) E \\
\tilde{\nabla}_{X} D=-K X-l(X) C+t(X) E \tag{2.2}\\
\tilde{\nabla}_{X} E=-L X-m(X) C-t(X) D
\end{gather*}
$$

because C, D and E are mutually orthogonal, where l, m and t being the third fundamental forms.

Now, let ϕ be the restriction of J on M, then we have

$$
\begin{equation*}
J X=\phi X+\eta(X) C, \quad \eta(X)=g(\xi, X), \quad J C=-\xi \tag{2.3}
\end{equation*}
$$

for any vector field X on $M([34])$. From this it is, using Hermitian property of J, verified that the aggregate (ϕ, ξ, η, g) is an almost contact metric structure on M, that is, we have

$$
\begin{aligned}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi) & =1, \quad g(\xi, X)=\eta(X) \\
\phi \xi=0, \quad g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

for any vector fields X and Y.
In the sequel, we denote the normal components of $\tilde{\nabla}_{X} C$ by $\nabla^{\perp} C$. The distinguished normal C is said to be parallel in the normal bundle if we have $\nabla^{\perp} C=0$, that is, l and m vanish identically.

Using the Kaehler condition $\tilde{\nabla} J=0$ and the Gauss and Weingarten formulas, we obtain from (2.3)

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.4}\\
\nabla_{X} \xi=\phi A X \tag{2.5}\\
K X=\phi L X-m(X) \xi \tag{2.6}\\
L X=-\phi K X+l(X) \xi \tag{2.7}
\end{gather*}
$$

for any vectors X and Y on M. From the last two equations, we have

$$
\begin{gather*}
g(K \xi, X)=-m(X) \tag{2.8}\\
g(L \xi, X)=l(X) \tag{2.9}
\end{gather*}
$$

Using the frame field $\left\{e_{0}=\xi, e_{1}, \cdots, e_{n-1}, \phi e_{1}, \cdots, \phi e_{n-1}\right\}$ on M it follows from (2.6) $\sim(2.9)$ that

$$
\begin{equation*}
T_{r} K=\eta(K \xi)=-m(\xi), \quad T_{r} L=\eta(L \xi)=l(\xi) \tag{2.10}
\end{equation*}
$$

where T_{r} means that the notation of trace.

Now, we retake D and E, there is no loss of generality such that we may assume $T_{r} L=0$ (cf. [17], [22]). So we have

$$
\begin{equation*}
l(\xi)=0 \tag{2.11}
\end{equation*}
$$

In what follows, to write our formulas in a convention form, we denote by $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right), \gamma=\eta\left(A^{3} \xi\right), T_{r} A=h, T_{r} K=k, T_{r}\left({ }^{t} A A\right)=h_{(2)}$ and for a function f we denote by ∇f the gradient vector field of f.

From (2.10) we also have

$$
\begin{equation*}
m(\xi)=-k \tag{2.12}
\end{equation*}
$$

From (2.6) and (2.7) we get

$$
\eta(X) l(\phi Y)-\eta(Y) l(\phi X)=m(Y) \eta(X)-m(X) \eta(Y)
$$

which together with (2.12) gives

$$
\begin{equation*}
l(\phi X)=m(X)+k \eta(X) \tag{2.13}
\end{equation*}
$$

which tells us, using (2.11), that

$$
\begin{equation*}
m(\phi X)=-l(X) \tag{2.14}
\end{equation*}
$$

where we have used (2.9) and (2.11).
Taking the inner product with $L Y$ to (2.6) and using (2.9), we get

$$
\begin{equation*}
g(K L X, Y)+g(L K X, Y)=-\{l(X) m(Y)+l(Y) m(X)\} \tag{2.15}
\end{equation*}
$$

Now, we put $\nabla_{\xi} \xi=U$ in the sequel. Then U is orthogonal to ξ because of (2.5).
We put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{2.16}
\end{equation*}
$$

where W is a unit vector orthogonal to ξ. Then we have

$$
\begin{equation*}
U=\mu \phi W \tag{2.17}
\end{equation*}
$$

by virtue of (2.5). Thus, W is also orthogonal to U. Further, we have

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} . \tag{2.18}
\end{equation*}
$$

From (2.16) and (2.17) we have

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{2.19}
\end{equation*}
$$

If we take account of (2.5), (2.10) and (2.19), then we find

$$
\begin{equation*}
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X) \tag{2.20}
\end{equation*}
$$

Since W is orthogonal to ξ, we can, using (2.5) and (2.17), see that

$$
\begin{equation*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{2.21}
\end{equation*}
$$

Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=-\phi \nabla_{X} U+g(A U+\nabla \alpha, X) \xi-A \phi A X+\alpha \phi A X \tag{2.22}
\end{equation*}
$$

From now on we shall suppose that M is a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ and that the third fundamental form t satisfies

$$
\begin{equation*}
d t=2 \theta \omega, \quad \omega(X, Y)=g(\phi X, Y) \tag{2.23}
\end{equation*}
$$

for any vector fields X and Y and a certain scalar θ, where d denotes the exterior differential operator. Then we can verify that (see [15], [17])

$$
\begin{equation*}
l=0 \tag{2.24}
\end{equation*}
$$

provided that $\theta-2 c \neq 0$ and hence

$$
\begin{equation*}
m(X)=-k \eta(X) \tag{2.25}
\end{equation*}
$$

because of (2.13). Using these facts, (2.8) and (2.9) turn out respectively to

$$
\begin{equation*}
K \xi=k \xi, \quad L \xi=0 \tag{2.26}
\end{equation*}
$$

Because of (2.24) and (2.25), we can also write respectively (2.6) and (2.7) as

$$
\begin{gather*}
K X=\phi L X+k \eta(X) \xi, \tag{2.27}\\
L=-\phi K \tag{2.28}
\end{gather*}
$$

In the rest of this paper, we shall suppose that \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature 4c, which called a complex space form and denote by $M_{n+1}(c)$. Then equations of the Gauss is given by

$$
\begin{align*}
& R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \tag{2.29}\\
- & g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y \\
+ & g(K Y, Z) K X-g(K X, Z) K Y+g(L Y, Z) L X-g(L X, Z) L Y
\end{align*}
$$

If we take account of (2.24) and (2.25), then equations of the Codazzi and Ricci are given respectively by

$$
\left.\begin{array}{rl}
\left(\nabla_{X} A\right) Y & -\left(\nabla_{Y} A\right) X=k\{\eta(Y) L X-\eta(X) L Y\} \\
& +c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \\
\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X=t(X) L Y-t(Y) L X
\end{array}\right] \begin{aligned}
\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X= & k\{\eta(X) A Y-\eta(Y) A X\}-t(X) K Y+t(Y) K X,
\end{aligned}
$$

$$
\begin{gather*}
g((K A-A K) X, Y)=k\{\eta(X) t(Y)-t(X) \eta(Y)\}, \tag{2.33}\\
L A X-A L X=(X k) \xi-\eta(X) \nabla k+k(\phi A X+A \phi X), \\
g((L K-K L) X, Y)=-2(\theta-c) g(\phi X, Y), \tag{2.34}
\end{gather*}
$$

which together with (2.15) and (2.24) yields

$$
\begin{equation*}
g(L K X, Y)=-(\theta-c) g(\phi X, Y) \tag{2.35}
\end{equation*}
$$

From (2.28) and this, we obtain

$$
\begin{equation*}
L^{2} X=(\theta-c)(X-\eta(X) \xi) \tag{2.36}
\end{equation*}
$$

By properties of the almost contact metric structure we have from (2.35)

$$
T_{r}\left({ }^{t} K K\right)-\|K \xi\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c),
$$

where we have used (2.6), (2.9) and (2.10), which connected to (2.8) gives

$$
\begin{equation*}
\|K-m \otimes \xi\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c) . \tag{2.37}
\end{equation*}
$$

In the same way, using (2.7), (2.11), (2.14), (2.35) we see that

$$
\begin{equation*}
\|m+k \xi\|^{2}-\|L \xi\|^{2}-T_{r}\left({ }^{t} L L\right)=2(n-1)(\theta-c) . \tag{2.38}
\end{equation*}
$$

Differentiating (2.23) covariantly along M and making use of (2.4) and the first Bianchi identity, we find

$$
(X \theta) \omega(Y, Z)+(Y \theta) \omega(Z, X)+(Z \theta) \omega(X, Y)=0,
$$

which implies $(n-2) X \theta=0$. Therefore, θ is a constant if $n>2$.
For the case where $\theta=c$ in (2.23) we have $d t=2 c \omega$. In this case, the normal connection M is said to be L-flat (see [27]).

Using (2.37) and (2.38) we can verify that the following lemma (see [15],[22]) :

Lemma 2.1. Let M be a semi-invariant submanifold with L-flat normal connection in $M_{n+1}(c), c \neq 0$. If $A \xi=\alpha \xi$, then we have $\nabla^{\perp} C=0$ and $K=L=0$ on M.

Putting $X=\xi$ in (2.33) and using (2.26), we find

$$
\begin{equation*}
K A \xi=k A \xi+k\left\{t^{\prime}-t(\xi) \xi\right\} \tag{2.39}
\end{equation*}
$$

where t^{\prime} is the associated vector of the 1 -form t.
If we apply this by ϕ and use (2.19), (2.26) and (2.28), then we get

$$
\begin{equation*}
g(K U, X)=k\{t(\phi X)-u(X)\} \tag{2.40}
\end{equation*}
$$

where $u(X)=g(U, X)$ for any vector field X.

Replacing X by ξ in (2.34) and using (2.5), (2.26) and (2.28), we get

$$
\begin{equation*}
K U=(\xi k) \xi-\nabla k+k U \tag{2.41}
\end{equation*}
$$

which together with (2.40) gives

$$
\begin{equation*}
X k=(\xi k) \eta(X)+k\{2 u(X)-t(\phi X)\} . \tag{2.42}
\end{equation*}
$$

If we apply (2.34) by ϕ and take account of (2.27) and the last equation, then we find

$$
\begin{aligned}
\phi A L X-K A X & =-k\left\{\left(t^{\prime}-t(\xi) \xi\right) \eta(X)+2 \eta(X)(A \xi-\alpha \xi)\right. \\
& +2 g(A \xi, X) \xi-A X+\phi A \phi X\}
\end{aligned}
$$

or, using (2.26), (2.34) and (2.35) we have $\phi A L+L A \phi=0$.
Since θ is constant if $n>2$, differentiating (2.36) covariantly, we get

$$
2 L \nabla_{X} L=(c-\theta)\{\eta(X) \phi A+g(\phi A, X) \xi\}
$$

or, using $(2.26),(2.32),(2.34)$ and (2.35), it is verified that (see [19])

$$
\begin{align*}
& (\theta-c)(A \phi-\phi A) X+\left(k^{2}+\theta-c\right)(u(X) \xi+\eta(X) U) \\
& \quad+k\{(A L+L A) X+k\{-t(\phi X) \xi+\eta(X) \phi \circ t\}=0 \tag{2.43}
\end{align*}
$$

Taking the trace of this, we obtain

$$
\begin{equation*}
k T_{r}(A L)=0 \tag{2.44}
\end{equation*}
$$

In the previous paper [17], [22] the following Lemma was proved.
Lemma 2.2. If M satisfies $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ and $\mu=0$ in $M_{n+1}(c), c \neq 0$, then we have $k=0$ on M.

We set $\Omega=\{p \in M: k(p) \neq 0\}$, and suppose that Ω is not empty. In the rest of this paper, we discuss our arguments on the open subset Ω of M. So, by Lemma 2.2, we see that $\mu \neq 0$ on Ω.
3. Semi-invariant submanifolds satisfying $R_{\xi} \phi=\phi R_{\xi}$

We introduce the structure Jacobi operator R_{ξ} with respect to the structure vector field ξ which is defined by $R_{\xi} X=R(X, \xi) \xi$ for any vector field X. Then we have from (2.29)

$$
\begin{aligned}
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X- & \eta(A X) A \xi+\eta(K \xi) K X-\eta(K X) K \xi \\
& +\eta(L \xi) L X-\eta(L X) L \xi .
\end{aligned}
$$

Since l and m are dual 1 -forms of $L \xi$ and $K \xi$ respectively because of (2.8) and (2.9), the last relationship is reformed as

$$
\begin{equation*}
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi+k K X+m(X) K \xi-l(X) L \xi \tag{3.1}
\end{equation*}
$$

where we have used $(2.8) \sim(2.12)$.
We will continue now, our arguments under the same hypotheses $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ as in section 3. Then, by virtue of (2.25) and (2.26) we can write (3.1) as

$$
\begin{equation*}
R_{\xi} X=c(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi+k K X-k^{2} \eta(X) \xi \tag{3.2}
\end{equation*}
$$

In the next step suppose, throughout this paper, that $R_{\xi} \phi=\phi R_{\xi}$. Then from (3.2) we have

$$
\begin{equation*}
\alpha(\phi A-A \phi) X=g(A \xi, X) U+g(U, X) A \xi+2 k L X \tag{3.3}
\end{equation*}
$$

where we have used (2.25), (2.26) and (2.28).
Transforming this by A, and taking the trace obtained, we have $g\left(A^{2} \xi, U\right)=0$ because of (2.44), which together with (2.16) yields

$$
\begin{equation*}
\mu g(A W, U)=0 \tag{3.4}
\end{equation*}
$$

Applying (3.3) by L and using (2.19), (2.27) and (2.34), we find

$$
\begin{align*}
\alpha\{A K X-k \eta(X) A \xi-\phi A L X\}+g(L U, X) A \xi & +g(K U, X) U \\
& =-2 k L^{2} X \tag{3.5}
\end{align*}
$$

which together with (2.33) and (2.40) yields

$$
\begin{aligned}
& k \alpha\left\{t(X) \xi-\eta(X) t^{\prime}+g(A \xi, X) \xi-\eta(X) A \xi\right\} \\
& \quad+g(L U, X) A \xi-g(A \xi, X) L U-u(X) K U+g(K U, X) U=0
\end{aligned}
$$

If we take the inner product with ξ to this and use (2.26), then we get

$$
\begin{equation*}
k \alpha\{t(X)-t(\xi) \eta(X)+g(A \xi, X)-\alpha \eta(X)\}+\alpha g(L U, X)=0 \tag{3.6}
\end{equation*}
$$

Combining the last two equations and taking account of (2.18), we obtain

$$
\begin{equation*}
\mu\{w(X) L U-g(L U, X) W\}+u(X) K U-g(K U, X) U=0 \tag{3.7}
\end{equation*}
$$

where $w(X)=g(W, X)$ for any vector X.
Remark 1. $\alpha \neq 0$ on Ω.
In fact, if not, then we have $\alpha=0$ on this subset. We discuss our arguments on such a place. So (3.3) reformed as

$$
\begin{equation*}
\mu\{w(X) U+u(X) W\}+2 k L X=0 \tag{3.8}
\end{equation*}
$$

because of (2.16) with $\alpha=0$. Putting $X=U$ or W in this we have respectively

$$
\begin{equation*}
L U=-\frac{\mu \beta}{2 k} W, \quad L W=-\frac{\mu}{2 k} U \tag{3.9}
\end{equation*}
$$

by virtue of (2.18) with $\alpha=0$. Using this and (2.36), we can write (3.5) as

$$
-\frac{\beta^{2}}{2 k} w(X) W+g(K U, X) U=-2 k(\theta-c)(X-\eta(X) \xi)
$$

Taking the inner product with W to this, we obtain $\beta^{2}=4 k^{2}(\theta-c)$.
On the other hand, combining (3.8) and (3.9) to (2.36) we also have $\beta^{2}=$ $4(n-1) k^{2}(\theta-c)$, which implies $(n-2)(\theta-c) k=0$, a contradiction because of our assumption and Lemma 2.1. Thus, $\alpha=0$ is not impossible on Ω.

Now, putting $X=U$ in (3.6) and remembering Remark 1, we find $k t(U)+$ $g(L U, U)=0$.

By the way, replacing X by U in (3.3) and using (2.16) and (2.19), we find

$$
\alpha(\phi A U+\mu A W)=\mu^{2} A \xi+2 k L U
$$

If we take the inner product with U and make use of (3.4) and Lemma 2.2, then we obtain $g(L U, U)=0$ and hence $t(U)=0$.

By putting $X=U$ in (3.7), we then have

$$
\begin{equation*}
K U=\tau U, \tag{3.10}
\end{equation*}
$$

where τ is given by $\tau \mu^{2}=g(K U, U)$ by virtue of Lemma 2.2. Applying this by ϕ and using (2.28), we find

$$
\begin{equation*}
L U=\tau \mu W \tag{3.11}
\end{equation*}
$$

It is, using (3.10) and (3.11), seen that

$$
\begin{equation*}
\tau^{2}=\theta-c \tag{3.12}
\end{equation*}
$$

because of (2.35).
Remark 2. $\Omega=\emptyset$ if $\theta=c$.
Since we have $\theta=c$, then (2.36) gives $L=0$ and thus $K X=k \eta(X) \xi$ by virtue of (2.27). Hence, (2.32) reformed as

$$
k\{\eta(X) A Y-\eta(Y) A X+\eta(X) t(Y) \xi-t(X) \eta(Y) \xi\}=0
$$

which shows $k\left(t(X)+g(A \xi, X)-\alpha^{\prime} \eta(X)\right)=0$, where we have put $\alpha^{\prime}=\alpha+t(\xi)$. Thus, the last two equations imply that

$$
A X=\eta(X) A \xi+g(A \xi, X) \xi-\alpha \eta(X) \xi
$$

Since U is orthogonal to ξ and W, it is clear that $A U=0$ and $A W=\mu \xi$.
If we put $X=\mu W$ in (3.3) and remember (2.17) and the fact that $L=0$, then we obtain $\mu^{2} U=0$ and hence $A \xi=\alpha \xi$. Owing to Lemma 2.1, we conclude that $k=0$ and thus $\Omega=\emptyset$.

By Remark 2, we may only consider the case where $\tau \neq 0$ on Ω. Because of (2.16) and (3.11) we have

$$
\begin{equation*}
t(\phi X)=\left(1+\frac{\tau}{k}\right) g(U, X) \tag{3.13}
\end{equation*}
$$

Therefore, it is clear that

$$
\begin{equation*}
t(X)=t(\xi) \eta(X)-\mu\left(1+\frac{\tau}{k}\right) w(X) \tag{3.14}
\end{equation*}
$$

Using (2.16), we can write (2.39) as

$$
\mu K W=k \mu W+k(t-t(\xi) \xi)
$$

which together with (3.14) implies that

$$
\begin{equation*}
K W=-\tau W \tag{3.15}
\end{equation*}
$$

because of Lemma 2.2.
If we take account of (2.43) and (3.13), then we find

$$
\begin{equation*}
\tau^{2}(A \phi X-\phi A X)+\tau(\tau-k)(u(X) \xi+\eta(X) U)+k(A L X+L A X)=0 \tag{3.16}
\end{equation*}
$$

Differentiating (3.10) covariantly along Ω, we find

$$
\left(\nabla_{X} K\right) U+K \nabla_{X} U=\tau \nabla_{X} U
$$

which together with (2.31) and (3.11) yields

$$
\begin{align*}
\mu \tau\{t(X) w(Y)- & t(Y) w(X)\}+g\left(K \nabla_{X} U, Y\right)-g\left(K \nabla_{Y} U, X\right) \\
& =\tau\left\{g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)\right\} . \tag{3.17}
\end{align*}
$$

By the way, because of (2.5) and (2.20) and (2.22) we verify that

$$
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha-2 k(K \xi-k \xi),
$$

which connected to (2.16) and (2.18) gives

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha \mu W-\mu^{2} \xi+\phi \nabla \alpha . \tag{3.18}
\end{equation*}
$$

Replacing X by ξ in (3.17) and taking account of the last two relationships, we find

$$
\begin{align*}
\mu^{2}(\tau-k) \xi & +\mu \tau(t(\xi)-2 \alpha) W+\mu(k-\tau) A W \tag{3.19}\\
& +3(L A U-\tau \phi A U)=\tau \phi \nabla \alpha-L \nabla \alpha
\end{align*}
$$

where we have used the first equation of (2.20).
In a direct consequence of (2.28) and (3.10), we obtain

$$
\begin{equation*}
\mu L W=\tau U \tag{3.20}
\end{equation*}
$$

because of $\mu \neq 0$ on Ω.

In the same way as above, we see from (3.15)

$$
\begin{align*}
\frac{\tau}{\mu}\{t(X) u(Y) & -t(Y) u(X)\}+g\left(K \nabla_{X} W, Y\right)-g\left(K \nabla_{Y} W, X\right) \tag{3.21}\\
& =\tau\left\{g\left(\nabla_{Y} W, X\right)-g\left(\nabla_{X} W, Y\right)\right\}
\end{align*}
$$

In the next place, from (2.16) and (2.19) we have $\phi U=-\mu W$. Differentiating this covariantly and using (2.4), we find

$$
g(A U, X) \xi-\phi \nabla_{X} U=(X \mu) W+\mu \nabla_{X} W
$$

Putting $X=\xi$ in this and making use of (3.18), we get

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(\xi \mu) W \tag{3.22}
\end{equation*}
$$

which enables us to obtain

$$
\begin{equation*}
W \alpha=\xi \mu \tag{3.23}
\end{equation*}
$$

Now, if we put $X=U$ in (3.3) and take account of (2.18), (2.19) and (3.11), then we get

$$
\phi A U+\mu A W=\left(\lambda^{\prime}-\alpha\right) A \xi+\frac{2 k \tau}{\alpha} \mu W
$$

because of Remark 1, where we have put $\beta=\alpha \lambda^{\prime}$. If we put

$$
\begin{equation*}
\lambda=\lambda^{\prime}+\frac{2 k \tau}{\alpha} \tag{3.24}
\end{equation*}
$$

then the last equation can be written as

$$
\begin{equation*}
\phi A U=\lambda A \xi-A^{2} \xi-2 k \tau \xi \tag{3.25}
\end{equation*}
$$

where we have used (2.16). Applying this by ϕ and using (2.5), we find

$$
\begin{equation*}
\phi A^{2} \xi=A U+\lambda U \tag{3.26}
\end{equation*}
$$

which together with (2.16) gives

$$
\begin{equation*}
\mu \phi A W=A U+(\lambda-\alpha) U \tag{3.27}
\end{equation*}
$$

Putting $X=A U$ in (3.3) and using (3.4), we also obtain

$$
\alpha\left(\phi A^{2} U-A \phi A U\right)=g(A U, U) A \xi+2 k L A U
$$

which together with (2.28) and (3.25) yields

$$
\alpha \phi A^{2} U=\alpha \lambda A^{2} \xi-\alpha A^{3} \xi-2 k \tau \alpha A \xi+g(A U, U) A \xi-2 k \phi K A U .
$$

By the way, we have $K A U=\tau A U$ by virtue of (2.33) and (3.14). Thus, the last relationship reformed as

$$
\alpha \phi A^{2} U=\alpha \lambda A^{2} \xi-\alpha A^{3} \xi-2 k \tau \alpha A \xi+g(A U, U) A \xi-2 k \tau \phi A U .
$$

If we take the inner product ξ to this, then we obtain

$$
\begin{equation*}
g(A U, U)=\gamma-\alpha \lambda^{2}+2 k \tau(\lambda+\alpha) \tag{3.28}
\end{equation*}
$$

Therefore, using (3.25) and this, we can write the last equation as

$$
\begin{equation*}
\alpha \phi A^{2} U=(\alpha \lambda+2 k \tau) A^{2} \xi-\alpha A^{3} \xi+\left(\gamma-\alpha \lambda^{2}\right) A \xi+4 k^{2} \tau^{2} \xi \tag{3.29}
\end{equation*}
$$

4. Semi-invariant submanifolds with $\phi \nabla_{\xi} \xi$-parallel Jacobi operator

In the rest of this paper we will suppose that M is a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ and that the third fundamental form t satisfies $d t=2 \theta \omega$ for a scalar $\theta \neq 2 c$ and at the same time $R_{\xi} \phi=\phi R_{\xi}$. Further, we assume that R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel on M.

Differentiating (3.2) covariantly along M and using (2.5), we find

$$
\begin{aligned}
g\left(\left(\nabla_{X} R_{\xi}\right) Y, Z\right) & =-\left(k^{2}+c\right)\left\{\eta(Z) g\left(\nabla_{X} \xi, Y\right)+\eta(Y) g\left(\nabla_{X} \xi, Z\right)\right\}+(X \alpha) g(A Y, Z) \\
& +\alpha g\left(\left(\nabla_{X} A\right) Y, Z\right)-g(A \xi, Z)\left\{g\left(\left(\nabla_{X} A\right) \xi, Y\right)-g(A \phi A Y, X)\right\} \\
& -g(A \xi, Y)\left\{g\left(\left(\nabla_{X} A\right) \xi, Z\right)-g(A \phi A Z, X)\right\}+(X k) g(K Y, Z) \\
& +k g\left(\left(\nabla_{X} K\right) Y, Z\right)-2 k(X k) \eta(Y) \eta(Z) .
\end{aligned}
$$

If we put $X=W$ in this and taking account of the assumption $\nabla_{\phi \nabla_{\xi} \xi} R_{\xi}=0$, we have

$$
\begin{aligned}
& (W \alpha) A Y-\left(k^{2}+c\right)\{g(\phi A W, Y) \xi+\eta(Y) \phi A W\} \\
& \quad+\alpha\left(\nabla_{W} A\right) Y-\left\{g\left(\left(\nabla_{W} A\right) \xi, Y\right)+g(A \phi A W, Y)\right\} A \xi \\
& \left.\quad+k\left(\nabla_{W} K\right) Y-\left\{\left(\nabla_{W} A\right) \xi+A \phi A W\right\} \eta(A Y)\right\}=0
\end{aligned}
$$

since we have $W k=0$ because of (2.41) and (3.10).
Now, replacing X by ξ in (2.22) and make use of (2.5) and (3.18), we find

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{4.1}
\end{equation*}
$$

If we put $Y=\xi$ in above relationship and use (4.1), then we get

$$
k\left(\nabla_{W} K\right) \xi=\alpha A \phi A W+\left(k^{2}+c\right) \phi A W .
$$

On the other hand, differentiating the first equation of (2.26) covariantly with respect to W and using (2.5) and the fact that $W k=0$, we find

$$
\left(\nabla_{W} K\right) \xi+K \phi A W=k \phi A W
$$

which together with the last equation implies that

$$
\begin{equation*}
\alpha A \phi A W+c \phi A W+k K \phi A W=0 . \tag{4.2}
\end{equation*}
$$

If we use (3.10) and (3.27) to this, then we obtain

$$
\alpha A^{2} U+\{\alpha(\lambda-\alpha)+c\} A U+(k \tau+c)(\lambda-\alpha) U+k K A U=0,
$$

which together with (2.33) and (3.14) gives

$$
\begin{equation*}
\alpha A^{2} U+\{\alpha(\lambda-\alpha)+k \tau+c\} A U+(\lambda-\alpha)(k \tau+c) U=0 . \tag{4.3}
\end{equation*}
$$

Since we have $\eta\left(A^{2} U\right)=0$ because of Remark 1, using (3.1) and (3.10), we can write (4.3) as

$$
\begin{equation*}
R_{\xi} A U=(\alpha-\lambda) R_{\xi} U \tag{4.4}
\end{equation*}
$$

Applying (4.3) by ϕ and taking account of (2.16), (2.19) and (3.25), we find

$$
\begin{aligned}
\alpha \phi A^{2} U+(\alpha(\lambda-\alpha)+k \tau+c) & \left(\lambda A \xi-A^{2} \xi-2 k \tau \xi\right) \\
& -(\lambda-\alpha)(k \tau+c)(A \xi-\alpha \xi)=0,
\end{aligned}
$$

which connected to (3.29) yields

$$
\begin{aligned}
\alpha A^{3} \xi=\left(\alpha^{2}+k \tau\right. & -c) A^{2} \xi+\left(\gamma-\alpha^{2} \lambda+\alpha(k \tau+c)\right) A \xi \\
& +\left\{2 k^{2} \tau^{2}-k \tau(\lambda-\alpha) \alpha-2 c k \tau+c \alpha(\lambda-\alpha)\right\} \xi
\end{aligned}
$$

If we use (2.16), then the last relationship reformed as
$\alpha \mu A^{2} W=(k \tau-c) A^{2} \xi+\left(\gamma-\lambda \alpha^{2}+\alpha(k \tau+c) A \xi+(k \tau-c)(2 k \tau-\alpha(\lambda-\alpha)) \xi\right.$, which together with (3.26) gives

$$
\begin{equation*}
\alpha \mu \phi A^{2} W=(k \tau-c) A U+\left\{(k \tau-c)+\gamma-\lambda \alpha^{2}+\alpha(k \tau+c)\right\} U . \tag{4.5}
\end{equation*}
$$

On the other hand, putting $X=A W$ in (3.3) and using (4.2), we find

$$
\alpha \phi A^{2} W+k K \phi A W+c \phi A W=g\left(A^{2} \xi, W\right) U+2 k L A W
$$

which together with (2.33), (3.10), (3.14) and (3.27) yields

$$
\mu \alpha \phi A^{2} W+(k \tau+c)(A U+(\lambda-\alpha) U)=\mu g\left(A^{2} \xi, W\right) U+2 k \mu L A W .
$$

However, putting $X=\mu W$ in (2.34) and using (3.14), (3.20) and (3.27), we get

$$
\mu L A W=(2 k+\tau) A U+k(\lambda-\alpha) U
$$

Substituting this into the last equation, we obtain

$$
\mu \alpha \phi A^{2} W=\left(k \tau+4 k^{2}-c\right) A U+\left\{\mu g\left(A^{2} \xi, W\right)+(\lambda-\alpha)\left(2 k^{2}-k \tau-c\right)\right\} U .
$$

If we compare this with (4.5), then we have

$$
4 k^{2} A U=\left\{\gamma-\lambda \alpha^{2}+2 \lambda k(\tau-k)+2 \alpha k^{2}-\mu^{2}(\alpha+g(A W, W))\right\} U
$$

This, it follows that

$$
\begin{equation*}
A U=\sigma U \tag{4.6}
\end{equation*}
$$

where the function σ is defined by on Ω

$$
\begin{equation*}
4 k^{2} \sigma=\gamma-\lambda \alpha^{2}+2 \lambda k(\tau-k)+2 \alpha k^{2}-\mu^{2}(\alpha+g(A W, W)) \tag{4.7}
\end{equation*}
$$

because of Remark 1. From (4.6) we can verify that (cf. [12], [15])

$$
\begin{equation*}
\xi \sigma=0, \quad W \sigma=0 \tag{4.8}
\end{equation*}
$$

Applying (4.6) by ϕ and using (2.19) and (3.25), we find

$$
\begin{equation*}
A^{2} \xi=(\lambda+\sigma) A \xi-(2 k \tau+\sigma \alpha) \xi \tag{4.9}
\end{equation*}
$$

which tells us that

$$
\begin{equation*}
A^{2} \xi=\rho A \xi+(\beta-\rho \alpha) \xi \tag{4.10}
\end{equation*}
$$

where we have put $\rho=\lambda+\sigma$. Then we have $\beta=\rho \alpha-2 k \tau-\sigma \alpha$.
Combining (2.16) and (2.18) to (4.10), we obtain

$$
\begin{equation*}
A W=\mu \xi+(\rho-\alpha) W \tag{4.11}
\end{equation*}
$$

on Ω. Differentiating this covariantly, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(\rho-\alpha) W+(\rho-\alpha) \nabla_{X} W \tag{4.12}
\end{equation*}
$$

If we take the inner product with W to this and use (2.21) and (4.11), then we find

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) W, W\right)=-2 g(A U, X)+X \rho-X \alpha \tag{4.13}
\end{equation*}
$$

Applying (4.12) by ξ and using (2.21), we also find

$$
\begin{equation*}
\mu g\left(\left(\nabla_{X} A\right) W, \xi\right)=(\rho-2 \alpha) g(A U, X)+\mu(X \mu) \tag{4.14}
\end{equation*}
$$

or using (2.30) and (3.20).

$$
\begin{equation*}
\mu\left(\nabla_{\xi} A\right) W=(\rho-2 \alpha) A U+\mu \nabla \mu-(k \tau+c) U \tag{4.15}
\end{equation*}
$$

From this we verify, using (2.26), (2.30) and (4.14), that

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=(\rho-2 \alpha) A U-2 c U+\mu \nabla \mu \tag{4.16}
\end{equation*}
$$

Putting $X=\xi$ in (4.13) and taking account of (4.14), we get

$$
\begin{equation*}
W \mu=\xi \rho-\xi \alpha \tag{4.17}
\end{equation*}
$$

Replacing X by ξ in (4.12) and using (3.20) and (4.15), we find

$$
\begin{gathered}
(\rho-2 \alpha) A U+(k \tau-c) U+\mu \nabla \mu+\mu\left\{A \nabla_{\xi} W-(\rho-\alpha) \nabla_{\xi} W\right\} \\
=\mu(\xi \mu) \xi+\mu^{2} U+\mu(\xi \rho-\xi \alpha) W
\end{gathered}
$$

Substituting (3.22) and (3.23) into this, we obtain

$$
\begin{align*}
& 3 A^{2} U-2 \rho A U+(\alpha \rho-\beta-k \tau-c) U+A \nabla \alpha+\frac{1}{2} \nabla \beta-\rho \nabla \alpha \tag{4.18}\\
& \quad=2 \mu(W \alpha) \xi+(2 \alpha-\rho)(\xi \alpha) \xi+\mu(\xi \rho-\xi \alpha) W
\end{align*}
$$

Now, if we use (4.6) and (4.11), then (3.27) can be written as

$$
\mu(\rho-\alpha) \phi W=(\sigma+\lambda-\alpha) U
$$

which connected to (2.17) and Lemma 2.1 gives

$$
\begin{equation*}
\sigma=\rho-\lambda . \tag{4.19}
\end{equation*}
$$

By the way, it is seen, using (4.6), that (3.28) reformed as $\gamma=\sigma \mu^{2}+\alpha \lambda^{2}-$ $2 k \tau(\lambda+\alpha)$. Using this and (4.9) we can write (4.7) as

$$
4 \sigma k^{2}=\alpha \lambda^{2}-\lambda\left(\mu^{2}+\alpha^{2}\right)+2 k(\alpha k-\lambda k-\tau \alpha),
$$

which together with (2.18) and (3.24) yields

$$
\begin{equation*}
2 \sigma k=(\lambda-\alpha)(\tau-k) \tag{4.20}
\end{equation*}
$$

on Ω. If we combine (4.6) to (4.4), then we have $(\sigma-\alpha+\lambda) R_{\xi} U=0$.
Lemma 4.1. $R_{\xi} U=0$ on Ω.
Proof. Suppose that $R_{\xi} U \neq 0$. Then we have $\sigma=\alpha-\lambda$ on this open subset on Ω. We restrict our arguments on this subset. Then we have $\rho-\alpha=0$ because of (4.19) and hence $A W=\mu \xi$ with the aid of (4.11).

On the other hand, putting $X=\mu W$ in (2.43) and remembering (2.26), (3.14), (3.20) and the last relationship, we obtain $\tau(k+\tau) A U=0$, which connected to Remark 2 gives $A U=0$.

In fact, if $k+\tau=0$, then k is a constant, which together with (2.41) and (3.10) gives $k-\tau=0$, a contradiction. By virtue of (4.6), it follows that $\lambda-\alpha=0$. Hence, (3.24) reformed as $\mu^{2}+2 k \tau=0$ because of (2.18), which implies that $\mu \nabla \mu+\tau \nabla k=0$.

By the way, it is clear, using (2.41) and (3.10), that

$$
\begin{equation*}
\nabla k=(\xi k) \xi+(k-\tau) U \tag{4.21}
\end{equation*}
$$

From the last two equations, it follows that $U \mu+\tau(k-\tau) \mu=0$.
Applying (4.18) by U and using (2.18) and the fact that $\rho=\alpha$ and $A U=0$, we find $U \mu=\mu^{2}+k \tau+c$. Comparing this and above relationship, we obtain $\tau^{2}+c=0$, that is $\theta-2 c=0$, a contradiction. Thus, $R_{\xi} U=0$ on Ω is proved.

Lemma 4.2. $\xi k=0$ on Ω.
Proof. Replacing X by U in (3.2) and using (3.20) and Lemma 6.1, we find $\alpha A U+(k \tau+c) U=0$, which together with (4.6) and Lemma 2.2 gives

$$
\begin{equation*}
\sigma \alpha+k \tau+c=0 \tag{4.22}
\end{equation*}
$$

Differentiation with respect to W and remembering (4.8) and (4.21) gives $\sigma W \alpha=0$, which implies $W \alpha=0$.

In fact, if not, then we have $\sigma=0$ on this set. Hence we have $\tau^{2}+c=0$ because of (4.21) and (4.22), a contradiction because $\theta-2 c \neq 0$ was assumed. Hence $W \alpha=0$ is proved on Ω.

Next, differentiating (4.20) with respect to W and using (4.8), (4.21) and itself, we find $W \lambda=0$.

If we differentiate (3.24) with respect to W, and use (4.21) and the fact that $W \alpha=W \lambda=0$, then $W \beta=0$, which together with (2.18) yields $W \mu=0$. Thus we see, using (4.17), that $\xi \rho-\xi \alpha=0$, which tells, using (4.8) and (4.19), us that $\xi \lambda-\xi \alpha=0$.

Now, differentiating (4.20) with respect to ξ and making use of (4.8) and the last equation, we find $(2 \sigma+\lambda-\alpha) \xi k=0$, which connected to (4.20) implies that $\xi k=0$. This completes the proof.

Putting $X=\xi$ in the first equation of Section 4, and using (2.5) and (4.1), we have

$$
\begin{align*}
\left(\nabla_{\xi} R_{\xi}\right) Y & =-\left(k^{2}+c\right)(u(Y) \xi+\eta(Y) U)+(\xi \alpha) A Y+\alpha\left(\nabla_{\xi} A\right) Y \\
& +(\xi k) K Y+k\left(\nabla_{\xi} K\right) Y-2 k(\xi k) \eta(Y) \xi \tag{4.23}\\
& -(3 A U+\nabla \alpha) g(A \xi, Y)-(3 g(A U, Y)+Y \alpha) A \xi .
\end{align*}
$$

By the way, from $K \xi=k \xi$, we have $\left(\nabla_{X} K\right) \xi+K \nabla_{X} \xi=(X k) \xi+k \nabla_{X} \xi$, which, together with (3.10) and Lemma 4.2 gives $\left(\nabla_{\xi} K\right) \xi=(k-\tau) U$.

If we put $Y=\xi$ in (4.23) and take account of (4.1), Lemma 4.2 and the last equation, then we find

$$
\left(\nabla_{\xi} R_{\xi}\right) \xi+\alpha A U+(k \tau+c) U=0 .
$$

However, if we replace X by U in (3.3) and make use of (3.10) and Lemma 4.1, then we obtain $\alpha A U+(k \tau+c) U=0$. Accordingly we verify that $R_{\xi}^{\prime}=$ $\left(\nabla_{\xi} R_{\xi}\right) \xi=0$ on Ω. Thus, by Lemma 5.3 of [15] we conclude that $\Omega=\emptyset$, that is, $k=0$ on M. So (2.27) becomes $K=\phi L$ which together with (2.35) yields

$$
\begin{equation*}
K^{2} X=(\theta-c)(X-\eta(X) \xi) \tag{4.24}
\end{equation*}
$$

We also have $K U=0$ because of (2.41), which connected to (4.24) gives $(\theta-c) U=0$. Using this fact and $k=0,(3.43)$ turns out to be $(\theta-c)(A \phi-\phi A)=$ 0.

In the following, we assume that $\theta-c \neq 0$ on M. Then we have

$$
A \phi-\phi A=0
$$

which implies $A \xi=\alpha \xi$. From this and (2.30) with $k=0$ we can verify that (cf. [11], [25]) $A^{2} X=\alpha A X+c(X-\eta(X) \xi)$ for any vector field X on M, which enables us to obtain

$$
\begin{equation*}
h_{(2)}=\alpha h+2(n-1) c \tag{4.25}
\end{equation*}
$$

On the other hand, differentiating (4.24) covariantly along M and using the previously obtained formulas and the Ricci indentity for K, we can deduce that (for detail, see (4.20) and (4.22) of [22])

$$
\begin{gather*}
(h+3 \alpha)(h-\alpha)=4(n-1)\{(n+1) \theta-2 c(n+2)\} \tag{4.26}\\
(\theta-3 c)(h-\alpha)=2(n-1)(\theta-2 c) \alpha \tag{4.27}
\end{gather*}
$$

Now, from (2.29) the Ricci tensor S of M is given by

$$
S X=c\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X-K^{2} X-L^{2} X,
$$

where we have used $k=l=0$, which together with (2.36) and (4.24) gives

$$
S X=\{c(2 n+1)-2(\theta-c)\} X+(2 \theta-5 c) \eta(X) \xi+h A X-A^{2} X
$$

Therefore, the scalar curvature \bar{r} of M is given by

$$
\begin{equation*}
\bar{r}=2(n-1)(2 n+1) c-4(n-1)(\theta-c)+h(h-\alpha), \tag{4.28}
\end{equation*}
$$

where we have used (4.25).
Lemma 4.3. $\theta-c=0$ if $\bar{r}-2(n-1) c \leq 0$.
Proof. If we put $\delta=4(n-1)\{(n+1) \theta-2 c(n+2)\}$, then $\delta \neq 0$ for $c<0$, because $\theta-c$ is nonnegative. However, we also see that $\delta \neq 0$ for $c>0$.

In fact, if not, then we have $\delta=0$. So we have $\theta=2(n-1) c /(n+1)$. Hence, if follows that $\theta-c=(n+3) c /(n+1)$. By the way, from (4.27) we see that $(h+3 \alpha)(h-\alpha)=0$. Using the last relationships, we can write (4.28) as

$$
\bar{r}-2(n-1) c=4 c(n-1)\left(n^{2}-3\right) /(n+1)+\varepsilon^{2}
$$

where $\varepsilon^{2}=0$ or $12 \alpha^{2}$, a contradiction because of $\bar{r}-2(n-1) c \leq 0$ was assumed. Consequently $\delta \neq 0$ on M is proved. Combining (4.26) to (4.27), we obtain

$$
\delta\left\{(\theta-3 c)^{2}-(\theta-2 c) \alpha^{2}\right\}=0
$$

which enables us to obtain

$$
\begin{equation*}
(\theta-3 c)^{2}=(\theta-2) \alpha^{2} \tag{4.28}
\end{equation*}
$$

By the way, it is clear that $\theta-3 c \neq 0$ for $c<0$ because $\theta-c$ is nonnegative. But, we also see that $\theta-3 c \neq 0$ for $c>0$ provided that $\bar{r}-2(n-1) c \leq 0$.

Indeed, if not, then we have $\theta-3 c=0$. So we see from (4.28) that $\alpha=0$ because $\theta-2 c \neq 0$ was assumed. Thus, (4.26) becomes $h^{2}=4(n-1)^{2} c$. Using these facts, we can write (4.28) as

$$
\bar{r}-2(n-1) c=4(n-1)(2 n-3) c,
$$

a contradiction because of $c>0$. Therefore $\theta-3 c \neq 0$ on M is proved.
If we combine (4.28) to (4.27), then we find

$$
\alpha(h-\alpha)=2(n-1)(\theta-3 c) .
$$

Using this fact, (4.26) turns out to be

$$
h(h-\alpha)=2(n-1)(2 n-1)(\theta-c)-4 n(n-1) c,
$$

which together with (4.28) implies that

$$
\bar{r}-2(n-1) c=2(n-1)(2 n-3)(\theta-c) .
$$

Accordingly we have $\theta-c=0$ if $\bar{r}-2(n-1) c \leq 0$. This completes the proof of Lemma 4.3.

According to Lemma 4.3 we have $K=L=0$ because of (2.36) and (4.24). And hence the normal connection of M is flat.

Let $N_{0}(p)=\left\{v \in T_{p}^{\perp}(M): A_{v}=0\right\}$ and $H_{0}(p)$ be the maximal J-invariant subspace of $N_{0}(p)$. Since $K=L=0$, the orthogonal complement of $H_{0}(p)$ is invariant under parallel translation with respect to the normal connection because of $\nabla^{\perp} \mathcal{C}=0$. Thus, by the reduction theorem in [10], [28] we see that M is a real hypersurface in a complex space form $M_{n}(c)$.

Since we have $\nabla^{\perp} \mathcal{C}=0$ and $k=0$, we can write (2.30) and (3.3) as

$$
\begin{gathered}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\}, \\
\alpha(\phi A-A \phi) X-g(A \xi, X) U-g(U, X) A \xi=0
\end{gathered}
$$

respectively. Making use of (2.4) and (2.5), and above two equations, it is proved in [25] that $g(U, U)=0$, that is, M is a Hopf hypersurface. Hence, we conclude that $\alpha(A \phi-\phi A)=0$ and thus $A \xi=0$ or $A \phi=\phi A$. Here, we note that the case $\alpha=0$ correspond to the case of radius $\pi / 4$ in complex projective space $P_{n} \mathbb{C}$ ([3], [18]). But, in the case complex hyperbolic space $H_{n} \mathbb{C}$ it is known that α never vanishes for Hopf hypersurfaces (cf.[5]). Thus, owing to Theorem O-MR, we have

Theorem 4.4. Let M be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ with constant holomorphic sectional curvature $4 c$ such that R_{ξ} is $\phi \nabla_{\xi} \xi$-parallel and the third fundamental form t satisfies $d t(X, Y)=2 \theta(\phi X, Y)$ for a scalar $\theta(\neq 2 c)$
and any vector fields X and Y on M. Then $R_{\xi} \phi=\phi R_{\xi}$ holds on M if and only if $A \xi=0$ or M is locally congruent to one of the following hypersurfaces provided that the scalar curvature \bar{r} of M satisfies $\bar{r}-2(n-1) c \leq 0$:
(I) in case that $M_{n}(c)=P_{n} \mathbb{C}$ with $\eta(A \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-$ $2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
(II) in case that $M_{n}(c)=H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.

References

[1] A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142.
[2] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395(1989), 132-141.
[3] J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric spaces of rank one, Trans. Amer. Math. Soc. 359 (2007), 3425-3438.
[4] D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersions, Kodai Math. Sem. Rep. 27(1976), 313-319.
[5] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
[6] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 80(1998), 155-167.
[7] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric Jacobi operator, Canadian Math. Bull. 51(2008), 359-371.
[8] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 3(1971), 333-340.
[9] J. I. Her, U-H. Ki and S.-B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc. 42(2005), 93-119.
[10] S. Kawamoto, Codimension reduction for real submanifolds of a complex hyperbolic space. Rev. math. univ. comput. madrid. 7(1994), 119-128.
[11] U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12(1988), 259-268.
[12] U-H. Ki, Commuting Jacobi operators for a semi-invariant submanifold of codimension 3 in complex space forms, J. Nat. Acad. Sci. ROK, Sci. Ser. 58-2(2019), 271-306.
[13] Ki, U-H, The Ricci tensor and structure Jacobi operator of submanifolds of codimension 3 in complex space forms. J. Nat. Acad. Sci. ROK, Sci. Ser. 59-2(2020), 367-394.
[14] Ki, U-H. and Kim, S. J, Jacobi operators along the structure flow on semi-invariant subminifolds of codimension 3 in a complex space form. J. Nat. Acad. Sci. ROK. Sci. Ser. 59-1(2020), 19-44.
[15] U-H. Ki and S. J. Kim, Structure Jacobi operators of semi-invariant submanifolds in a complex space form, East Asian Math. J. 36-3(2020), 389-415.
[16] U-H. Ki, S. J. Kim and H. Kurihara, Jacobi operators with respect to the Reeb vector fields on real hypersurfaces in a nonflat complex space form, Kyungpook Math J. 56(2016), 541-575.
[17] U-H. Ki and H. Kurihara, Semi-invariant submanifolds of codimension 3 in a complex space form in terms of the structure Jacobi operators, to appear in Comm. Korean Math. Soc.
[18] U-H. Ki, S. Nagai and R. Takagi, The structure vector filed and structure Jacobi operator of real hypersurfaces in nonflat complex space forms, Geom. Dedicata 149(2010), 161-176.
[19] U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifolds of codimension 3 in a complex projective space, Nihonkai Math J. 14(2003), 1-16.
[20] U-H. Ki and H. Song, Submanifold of codimension 3 with almost contact metric structure in a complex space form, J. Nat. Acad. Sci. ROK. Sci. Ser. 58-1(2019), 37-63.
[21] U-H. Ki and H. Song, Semi-invariant submanifolds of condimension 3 in a complex space form with commuting structure Jacobi operator, to appear in Kyungpook. Math. J.
[22] U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J. 11(2000), 57-86.
[23] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149.
[24] S. Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
[25] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S.-S. Chern eds.)), 233-305.
[26] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1973), 355-364.
[27] M. Okumura, Normal curvature and real submanifold of the complex projective space. Geom. Dedicata 7(1978), 509-517.
[28] M. Okumura, Codimension reduction problem for real submanifolds of complex projective space. Colloq. Math János Bolyai. 56(1989), 574-585.
[29] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurface with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36(2006), 1603-1613.
[30] H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25(2001), 279-298.
[31] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
[32] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan 27(1975), 43-53, 507-516.
[33] Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sũgaku 16(1964), 34-61.
[34] K. Yano, and U-H. Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kodai Math. Sem. Rep. 29(1978), 285-307.
[35] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).

U-HANG KI

The National Academy of Sciences, Seoul 06579, Korea
E-mail address: uhangki2005@naver.com

SOO JIN KIM
Department of Mathematics Chosun University Gwanguu, 61452, Korea
E-mail address: ccamzzicee@naver.com

[^0]: Received November 29, 2021; Accepted December 31, 2021.
 2010 Mathematics Subject Classification. 53B25, 53C40, 53C42.
 Key words and phrases. Semi-invariant submanifold, almost contact metric structure, structure Jacobi operator, Hopf hypersurface, scalar curvature.

 * Corresponding author.

