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ZERO-KNOWLEDGE PROOFS FROM SPLWE-BASED

COMMITMENTS

Jinsu Kim and Dooyoung Kim∗

Abstract. Recently, an LWE-based commitment scheme is proposed.

Their construction is statistically hiding as well as computationally bind-

ing. On the other hand, the construction of related zero-knowledge proto-
cols is left as an open problem. In this paper, we present zero-knowledge

protocols with hardness based on the LWE problem. we show how to in-

stantiate efficient zero-knowledge protocols that can be used to prove linear
and sum relations among these commitments. In addition, we show how

the variant of LWE, spLWE problem, can be used to instantiate efficient

zero-knowledge protocols.

1. Introduction

Since Ajtai ([1]) proved reductions from the worst-case to the average-case for
some lattice problems, lattice-based cryptography has developed rapidly. cryp-
tographers can design provably secure schemes and protocols unless all instances
of lattice problems are easy to solve. In 2004, Regev introduced the Learning
with Errors (LWE) ([13]). it makes possible a lot of important cryptographic
primitives like encryption, signature, key-exchange based on it with a strong
security guarantee. ([11], [5], [8]) This is necessary as it is one of the promising
candidates as an alternative for the factoring and discrete logarithm problem
in post-quantum era.

Commitment schemes ([3]) are one of the basic primitives in cryptography.
They allow one to publicly commit to a secret message or value. The com-
mitted value can not be changed by anyone and remains as secret information
until the committer determines to reveal it. Commitment schemes also have
a lot of applications. They can be found as key tools in many cryptographic
services such as secret sharing, zero-knowledge protocols, and others. Arguably,
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when converted to zero-knowledge protocols, they allow a committer to con-
vince a challenger without leakage about secret key and opening information.
In particular, this property enforces honest behavior by adversaries. This leads
to secure protocols against a malicious attacker. In lattice-based cryptography,
several pieces of research are proposed in terms of post-quantum security. It is
proposed LPN-based commitment schemes and zero-knowledge protocols by [9].
An improved version of [9] was presented in [15]. They use Ring-LWE problem
to design secure commitment schemes and zero-knowledge protocols. Unlike the
schemes and protocols in [15], Ring-LWE based-encryption schemes are con-
structed in advance, and used as building blocks for the commitment schemes
and protocols in ([2], [6], [7]). In [7], commitment schemes and their companion
zero-knowledge protocols are efficient in the sense that they achieve negligible
soundness error with a single iteration of the zero-knowledge protocol. In [10],
an LWE-based commitment scheme is presented. They use the spLWE problem,
a sparse secret variant of LWE, as a base problem to improve its efficiency. On
the other hand, the construction of related zero-knowledge protocols is left as
an open problem.

In this work, we present LWE-based zero-knowledge protocols for proving
knowledge, and for linear, sum relations on committed values. Due to the re-
jection sampling lemma in [12], Our protocols also achieve negligible soundness
error with a single iteration of the zero-knowledge protocol. To improve their
efficiency, we show spLWE-based instantiation of the protocols.

The rest of the paper consists of as follows. In Section 2, we give backgrounds
for spLWE problem and the spLWE-based commitment. Section 3 present the
three main zero-knowledge protocols for proving knowledge, and for linear, sum
relations on committed values. Finally, Section 4 provides the concluding re-
marks and future works.

2. Background and Notation

Throughout the paper, matrices will be denoted by capital bold letters, and
vectors will be denoted by small letters, ~v. We will write ‖~v‖ for the Euclidian
norm of vectors. For a distribution D, a ← D denotes choosing an element
according to the distribution of D and ~a ← Dm means that each component
of ~a is sampled independently from D. For a set A, U(A) means a uniform
distribution on the set A and a← A denotes choosing an element according to
the uniform distribution on A. We denote by Zq = Z/qZ = {0, 1 · · · , q− 1} and
T = R/Z the additive group of real numbers modulo 1, and Tq the subgroup

of T having order q, consisting of {0, 1q , · · · ,
q−1
q }. The 〈 , 〉 means the inner

product of two vectors and [~v]i means the its i-th component of ~v.

2.1. Discrete Gaussian Distribution

For given s > 0, a discrete Gaussian distribution over a lattice L ⊆ Rm
centered at ~v ∈ Rm is defined as DL,~v,s(~x) = ρ~v,s(~x)/ρ~v,s(L) for any ~x ∈ L,
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where
ρ~v,s(~x) = exp(−π‖~x− ~v‖2/s2) and ρs(L) :=

∑
~x∈L

ρ~v,s(~x).

We note that the standard deviation is σ = s/
√

2π. Alternatively, we can repre-
sent the Gaussian function ρ~v,s(~x) as ρ~v,σ(~x) then the discrete Gaussian distri-
bution DL,~v,s(~x) is defined as DL,~v,s(~x) = DL,~v,σ(~x) = ρ~v,σ(~x)/ρ~v,σ(L) where

ρ~v,σ(~x) = exp(−‖~x− ~v‖2/2σ2) and ρ~v,σ(L) :=
∑
~x∈L

ρ~v,σ(~x).

When L = Z, ~v = 0, we omit the subscript L, ~v respectively and denote
DZm,~v,σ(~x) by Dm

~v,σ(~x). We collect some useful lemmas related to a discrete
Gaussian distribution.

Lemma 2.1 ([4], Lemma 2.4). For any real s > 0 and T > 0, and any vector
x ∈ Rn, we have

Pr[|〈~x,Dn
Z,s〉| ≥ T · s‖~x‖] < 2 exp(−π · T 2).

Lemma 2.2 ([12], Lemma 4.4). Tail Bounds of discrete Gaussians:

• For any k > 0, Pr [|z| > kσ; z ← Dσ] ≤ 2 exp(−k2/2).
• For any k > 1, Pr [‖~z‖ > kσ

√
m;~z ← Dm

σ ] < km exp(m−mk2/2).

2.2. LWE and spLWE

For integers n, q ≥ 1, a vector ~s ∈ Znq , and a distribution φ on R, let Aq,~s,φ
be the distribution of the pairs (~a, b = 〈~a,~s〉+ e) ∈ Tnq × T, where ~a← Tnq and
e← φ.

Definition 2.1 (Learning with Errors (LWE)). For integers n, q ≥ 1, an error
distribution φ over R, and a distribution D over Znq , LWEn,q,φ(D), is to dis-
tinguish (given arbitrarily many independent samples) the uniform distribution
over Tnq × T from Aq,~s,φ with a fixed sample ~s← D.

We note that a search variant of LWE is the problem of recovering ~s from
(a, b) = (a, 〈a, s〉+ e) ∈ Tnq × T sampled according to Aq,~s,φ, and these are also
equivalently defined on Znq ×Zq rather than Tnq ×T for discrete (Gaussian) error
distributions over Zq.

Let LWEn,m,q,φ(D) denotes the case when the number of samples are bounded
by m ∈ N. We simply denote LWEn,q,φ when the secret distribution D is U(Znq ).
In many cases, φ is a (discrete) Gaussian distribution so we simply denote by
LWEn,m,q,s instead of LWEn,m,q,φ. We remark that in the above definition,
Aq,~s,φ can be substituted by the distribution over Znq × Zq for a distribution φ
on Z by sampling ~a← Znq . Clearly, these two problems are equivalent.

For a set Xn,ρ,θ which consists of the vectors ~s ∈ Zn whose nonzero compo-
nents are in {±1,±2,±4, · · · ,±ρ}, and the number of nonzero components is
θ, we write spLWEn,m,q,s,ρ,θ as the problem LWEn,m,q,s(U(Xn,ρ,θ)). We also
consider a variant of LWE, LWEn,q,≤α, in which the amount of noise is some
unknown β ≤ α. Similarly, spLWEn,q,≤α,ρ,θ can be defined by the same way.
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2.3. spLWE-based Commitment

In [10], they present spLWE-based commitment schemes. The setup algo-
rithm chooses a spLWE dimension n, the number of sample m, a weight θ, a
bound of non-zero coefficient ρ, a prime modulus q, a message space rank l, and
a bound of elements in a challenge set β, and set width parameters s1, s2, s3, and
rejection sampling parameters α1, α2. The commitment algorithm computes the
commitment vector ~c with public random matrices A,B and randomness vec-
tors ~r,~e. The verification algorithm checks if the commitment computed from
opening informations (~m′, ~r′, ~e′, f ′) is indeed the commitment ~c, and the norm
of randomness vector used in the commitment ~c is sufficiently small.

• Setup(1κ, 1k): Set parameters n,m, q, l, θ, ρ, β ∈ N and s1, s2, s3 ∈ R
with 2κ, 2k-bit security where s2 = α2βρ

√
2πθ, s3 = 2α3s1β

√
m for

some α1, α2 ∈ R≥1 and q is prime. Sample seedA ← {0, 1}y1 , seedB ←
{0, 1}y2 . The public commitment key pk is (seedA, seedB).

• Com(~m ∈ Znq ): Generate random matrices A ← Gen(seedA),B ←
Gen(seedB) where (A,B) ∈ Zm×lq × Zm×nq and sample ~r ← Xn,ρ,θ,
~e← Dm

Z,s1 , compute ~c = Com(~m,~r,~e) = A~m+ B~r + ~e mod q.

• Ver(~c, (~m′, ~r′, ~e′, f ′)): Given a commitment ~c with a opening information
(~m,~r,~e, f), the verifier accepts if and only if A~m′+B(f ′−1~r′)+f ′−1~e′ =

~c, ‖~r′‖∞ ≤ 24s2/
√

2π, ‖~e′‖∞ ≤ 24s3/
√

2π, |f ′| ≤ β.

3. Zero-Knowledge Proofs of Knowledge

In this section, we present zero-knowledge protocols that can be constructed
from the spLWE-based commitment scheme. Our design approach is based on
the well known technique, cut-and-choose proof in [14]. We also use the re-
jection sampling as introduced by Lyubashevsky to prevent leakage of error
information.

Lemma 3.1 ([12] Theorem 4.9, Rejection Sampling). Let n, T ∈ N be natural
numbers and U ⊆ Zn, such that all elements in U have norm less than T . Let
further D : U → R be a probability distribution and σ ∈ ω(T

√
log n). Then there

exists a constant M ∈ O(1) such that the output distributions of the algorithms
A1, A2 where

• A1 : draw ~v ← D,~z ← Dn
σ and output (~z,~v) with probability

Dnσ (~z)
MDn

~v,σ
(~z) .

• A2 : draw ~v ← D,~z ← Dn
σ and output (~z,~v) with probability 1

M .

have at most statistical distance 2−ω(log n)/M . In particular A1 outputs some-
thing with probability at least 1 − 2−ω(logn)/M . For a concrete instantiation
σ = αT for α ∈ R>0, we have M = exp(12/α+ 1/(2α2)) and the outputs of A1

and A2 are within statistical distance 2−100/M .
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3.1. Proof for Committed Messages

Let ~c = A~m + B~r + ~e mod q be a commitment that is published by the
prover. The prover can prove that ~c is a commitment of the message ~m. This
can be done by showing that the prover can prove he knows a valid randomness
of ~c without revealing it. In this case, the public input is (~c, ~m) and the private
input is (~r,~e):

• P computes ~t = B~ρ + ~η mod q where ~ρ ← Dn
σ2
, ~η ← Dm

σ3
, and sends ~t

to V.
• V sends a random integer d ∈ [−β, β] ∩ Z.
• P checks d ∈ [−β, β] ∩ Z, and computes ~sr = ~ρ + d~r mod q, ~se =
~η + d~e mod q. If d = 0, P sends ~sm = 0, ~sr, ~se to V. Otherwise, P
sends ~sm = 0, ~sr, ~se to V with probability p = Dn

σ2
(~ρ)/M2D

n
d~r,σ2

(~ρ) ×
Dn
σ3

(~η)/M3D
n
d~e,σ3

(~η), and ⊥ with probability 1− p.
• V accepts iff ~sm = 0, ~t + d~c = B~sr + ~se, ‖~sr‖∞ ≤ 12σ2, and ‖~se‖∞ ≤

12σ3.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 3.1. The protocol is a Σ′-protocol with completeness error close to
1
β + β−1

βM2M3
overwhelmingly for the relations.

Proof. We can prove completeness, special soundness, and Honest-Verifier Zero-
Knowledge property of this protocol.

• Completeness: The verifier accepts with overwhelming probability if the
protocol is not aborted by the prover, and the accepting probability is
close to 1

2β+1 + 2β
(2β+1)M2M3

overwhelmingly.

• Special Soundness: Given a commitment ~c and a pair of accepting tran-
scripts (~t, d, (0, ~sr, ~se)), (~t, d, (0, ~s′r, ~s

′
e)) where d 6= d′, we can extract a

valid opening information of ~c.
• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable
distribution.

Completeness: When d = 0, P sends ~sm = 0, ~sr = ~ρ,~se = ~η to V. Thus
~t + d~c = ~t = B~ρ + ~η = B~sr + ~se mod q. Since ~ρ ← Dn

σ2
, ~η ← Dm

σ3
, ‖~sr‖∞ =

‖~ρ‖∞ ≤ 12σ2, and ‖~se‖∞ = ‖~η‖∞ ≤ 12σ3 with overwhelming probability by
lemma 2.1.

In the case d 6= 0, P sends ~sm = 0, ~sr = ~ρ + d~r,~se = ~η + d~e to V with
probability close to 1

M2M3
overwhelmingly by the rejection sampling lemma.

Thus B~sr + ~se = B~ρ + ~η + d(B~r + ~e) = ~t + d~c. Note that the distribution
of ~sr = ~ρ + d~r,~se = ~η + d~e are statistically close to Dn

σ2
, Dm

σ3
respectively by

the rejection sampling lemma. Hence, ‖~sr‖∞ ≤ 12σ2, and ‖~se‖∞ ≤ 12σ3 with
overwhelming probability by lemma 2.1. Therefore, V accepts with probability
close to 1

2β+1 + 2β
(2β+1)M2M3

overwhelmingly.
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Special Soundness: Suppose two accepting transcripts (~t, d, (0, ~sr, ~se)), and
(~t, d, (0, ~s′r, ~s

′
e)) where d 6= d′ are given. Then the following equations are hold:

~t+ d~c = B~sr + ~se mod q

~t+ d′~c = B~s′r + ~s′e mod q

By subtracting the above equations, we get:

(d− d′)~c = B(~sr − ~s′r) + (~se − ~s′e) mod q

In other words, we have a witness ((~sr − ~s′r), (~se − ~s′e), d− d′) for (B,~c) such
that ‖~sr − ~s′r‖∞ ≤ 24σ2, and ‖~se − ~s′e‖∞ ≤ 24σ3.

Honest-Verifier Zero-Knowledge: Let ~c and challenge d are given as inputs.
First, the simulator samples ~s′m = 0, ~s′r ← Dn

σ2
, and ~s′e ← Dm

σ3
, and com-

putes ~t = A~s′m + B~s′r + ~s′e − d~c. In the case d = 0, the simulator outputs
(~t, 0, (~s′m, ~s

′
r, ~s
′
e)). This is statistically indistinguishable from accepting tran-

scripts of the real protocol, since the distribution of response (~s′m, ~s
′
r, ~s
′
e) is

statistically indistinguishable from the distribution of real response by the re-
jection sampling lemma, and ~t is uniquely determined by ~s′m, ~s

′
r, ~s
′
e, and d

in the real protocol and in the simulation. When d 6= 0, the simulator out-
puts (~t, d, (~s′m, ~s

′
r, ~s
′
e)) with probability 1

M2M3
. Otherwise, the simulator outputs

(~t0, d,⊥) where ~t0 ← Zmq . The non-aborting case of this simulation is indis-
tinguishable from the non-aborting case of the real protocol similarly. B~ρ + ~η
mod q in ~t = B~ρ + ~η mod q in real protocol can be regarded as an instance
of LWEn,m,q,σ3(Dn

σ2
), which is hard under the condition, spLWEn,m+n,q,s1,ρ,θ

is hard. Thus ~t is computationally indistinguishable from ~t0, which is sampled
from uniform random distribution over Zmq .

�

3.2. Proof of Linear Relation

We now describe our zero-knowledge proof of linear relation. Let ~ci = A~mi+
B~ri + ~ei mod q for i = 1, 2 be commitments that are published by the prover
such that ~m2 = g(~m1) for a linear function g. The goal of following protocol is
to prove the linear relation of committed messages in zero-knowledge fashion.
This can be done by modifying the previous zero-knowledge proof of opening
information. The public inputs are ~ci and g for i = 1, 2, and the private inputs
are (~ri, ~ei) for i = 1, 2:

• P computes ~ti = A~µi+B~ρi+~ηi mod q for i = 1, 2 where ~µ1 ← Zlq, ~µ2 =

g(~µ1), ~ρi ← Dn
σ2
, ~ηi ← Dm

σ3
for i = 1, 2, and sends ~t1,~t2 to V.

• V sends a random integer d ∈ [−β, β] ∩ Z.
• P checks d ∈ [−β, β] ∩ Z, and computes ~sm,i = ~µi + d~mi mod q, ~sr,i =
~ρi + d~ri mod q, ~se,i = ~ηi + d~ei mod q for i = 1, 2. If d = 0, P sends
~sm,i, ~sr,i, ~se,i for i = 1, 2 to V. Otherwise, P sends ~sm,i, ~sr,i, ~se,i for

i = 1, 2 to V with probability p =
∏2
i=1D

n
σ2

(~ρi)/M2,iD
n
d~ri,σ2

(~ρi) ×
Dn
σ2

(~ηi)/M3,iD
n
d~ei,σ2

(~ηi), and ⊥ with probability 1− p.



ZERO-KNOWLEDGE PROOFS FROM SPLWE-BASED COMMITMENTS 91

• V accepts iff ~ti + d~ci = A~sm,i + B~sr,i + ~se,i mod q, ‖~sr,i‖∞ ≤ 12σ2,
and ‖~se,i‖∞ ≤ 12σ3 for i = 1, 2, and ~sm,2 = g(~sm,1).

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 3.2. The protocol is a Σ′-protocol with completeness error close to
1

2β+1 + 2β
(2β+1)

∏2
i=1M2,iM3,i

overwhelmingly for the relations.

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the
protocol is not aborted by the prover, and the accepting probability is
close to 1

2β+1 + 2β
(2β+1)

∏2
i=1M2,iM3,i

overwhelmingly.

• Special Soundness: Given commitments ~c1,~c2 and a pair of accepting
transcripts

(~t1,~t2, d, (~sm,1, ~sm,2, ~sr,1, ~sr,2, ~se,1, ~se,2))

(~t1,~t2, d
′, (~s′m,1, ~s

′
m,2, ~s

′
r,1, ~s

′
r,2, ~s

′
e,1, ~s

′
e,2))

where d 6= d′, we can extract a valid opening information of ~c1, and ~c2.
• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable
distribution.

We can prove completeness, special soundness, and Honest-Verifier Zero-
Knowledge property of this protocol as in the previous case.

Completeness: When d = 0, P sends ~sm,i = ~µi, ~sr,i = ~ρi, ~se,i = ~ηi to V

for i = 1, 2. Thus ~ti + d~ci = ~ti = A~µi + B~ρi + ~ηi = A~sm,i + B~sr,i + ~se,i
mod q for i = 1, 2. Since ~ρi ← Dn

σ2
, ~ηi ← Dm

σ3
, ‖~sr,i‖∞ = ‖~ρi‖∞ ≤ 12σ2, and

‖~se,i‖∞ = ‖~ηi‖∞ ≤ 12σ3 for i = 1, 2 with overwhelming probability by lemma
2.1. Note that ~sm,2 = ~µ2 = g(~µ1) = g(~sm,1)

In the case d 6= 0, P sends ~sm,i = ~µi+d~mi, ~sr,i = ~ρi+d~ri, ~se,i = ~ηi+d~ei to V
with probability close to 1∏2

i=1M2,iM3,i
overwhelmingly by the rejection sampling

lemma. Thus A~sm,i+B~sr,i+~se,i = A~µi+B~ρi+~ηi+d(A~mi+B~ri+~ei) = ~ti+d~ci
for i = 1, 2. Note that the distributions of ~sr,i = ~ρi + d~ri, ~se,i = ~ηi + d~ei for
i = 1, 2 are statistically close to Dn

σ2
, Dm

σ3
respectively by the rejection sampling

lemma. Hence, ‖~sr,i‖∞ ≤ 12σ2, and ‖~se,i‖∞ ≤ 12σ3 for i = 1, 2 with overwhelm-
ing probability by lemma 2.1, and ~sm,2 = ~µ2+d~m2 = g(~µ1)+dg(~m1) = g(~sm,1).

Therefore, V accepts with probability close to 1
2β+1 + 2β

(2β+1)(
∏2
i=1M2,iM3,i)

over-

whelmingly.

Special Soundness: Suppose given two accepting transcripts

(~t1,~t2, d, (~sm,1, ~sm,2, ~sr,1, ~sr,2, ~se,1, ~se,2)),

(~t1,~t2, d
′, (~s′m,1, ~s

′
m,2, ~s

′
r,1, ~s

′
r,2, ~s

′
e,1, ~s

′
e,2))

where d 6= d′. Then the following equations are hold:

~ti + d~ci = A~sm,i + B~sr,i + ~se,i mod q
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~ti + d′~ci = A~s′m,i + B~s′r,i + ~s′e,i mod q

By subtracting the above equations, we get:

(d− d′)~ci = A(~sm,i − ~s′m,i) + B(~sr,i − ~s′r,i) + (~se,i − ~s′e,i) mod q

In other words, we have a witness ((d− d′)−1(~sm,i−~s′m,i), (~sr,i−~s′r,i), (~se,i−
~s′e,i), d−d′) for (A,B,~ci) such that ‖~sr,i−~s′r‖∞ ≤ 24σ2, and ‖~se−~s′e‖∞ ≤ 24σ3
for i = 1, 2.

Honest-Verifier Zero-Knowledge: Let ~c1,~c2 and challenge d are given as in-
puts. First, the simulator samples ~s′m,1 ← Zlq, ~s′r,i ← Dn

σ2
, ~s′e,i ← Dm

σ3
, and

computes ~s′m,2 = g(~s′m,1), ~ti = A~s′m,i + B~s′r,i + ~s′e,i − d~ci for i = 1, 2. In the

case d = 0, the simulator outputs (~t1,~t2, 0, (~s
′
m,1, ~s

′
m,2, ~s

′
r,1, ~s

′
r,2, ~s

′
e,1, ~s

′
e,2)). This

is statistically indistinguishable from accepting transcripts of the real proto-
col, since the distribution of response (~s′m,1, ~s

′
m,2, ~s

′
r,1, ~s

′
r,2, ~s

′
e,1, ~s

′
e,2) is statisti-

cally indistinguishable from the the distribution of real response by the rejec-
tion sampling lemma, and ~ti is uniquely determined by ~s′m,i, ~s

′
r,i, ~s

′
e,i, and d in

the real protocol and in the simulation. When d 6= 0, the simulator outputs
(~t1,~t2, 0, (~s

′
m,1, ~s

′
m,2, ~s

′
r,1, ~s

′
r,2, ~s

′
e,1, ~s

′
e,2)) with probability

∏2
i=1M2,iM3,i. Other-

wise, the simulator outputs (~t0,1,~t0,2, d,⊥) where ~t0,i ← Zmq for i = 1, 2. The
non-aborting case of this simulation is indistinguishable from the non-aborting
case of the real protocol similarly. B~ρi + ~ηi mod q in ~ti = A~µi + B~ρi + ~ηi
mod q in real protocol can be regarded as an instance of LWEn,m,q,σ3(Dn

σ2
),

which is hard under the condition, spLWEn,m+n,q,s1,ρ,θ is hard. Thus ~ti is com-

putationally indistinguishable from ~t0,i, which is sampled from uniform random
distribution over Zmq �

3.3. Proof of Sum

We now describe our zero-knowledge proof of sum. Let ~ci = A~mi + B~ri + ~ei
mod q for i = 1, 2, 3 be commitments that are published by the prover such that
~m3 = ~m1 + ~m2. The goal of following protocol is to prove the sum relation of
committed messages in zero-knowledge fashion. The idea of the zero-knowledge
proof is similar to the previous proof of linear relation. We now describe the
zero-knowledge proof of sum as follows. The public inputs are ~ci for i = 1, 2, 3,
and the private inputs are (~ri, ~ei) for i = 1, 2, 3:

• P computes ~ti = A~µi + B~ρi + ~ηi mod q for i = 1, 2, 3 where ~µ1, ~µ2 ←
Zlq, ~µ3 = ~µ1 + ~µ2, ~ρi ← Dn

σ2
, ~ηi ← Dm

σ3
for i = 1, 2, 3, and sends ~t1,~t2,~t3

to V.
• V sends a random integer d ∈ [−β, β] ∩ Z.
• P checks d ∈ [−β, β] ∩ Z, and computes ~sm,i = ~µi + d~mi mod q, ~sr,i =
~ρi + d~ri mod q, ~se,i = ~ηi + d~ei mod q for i = 1, 2, 3. If d = 0, P sends
~sm,i, ~sr,i, ~se,i for i = 1, 2, 3 to V. Otherwise, P sends ~sm,i, ~sr,i, ~se,i for

i = 1, 2, 3 to V with probability p =
∏3
i=1D

n
σ2

(~ρi)/M2,iD
n
d~ri,σ2

(~ρi) ×
Dn
σ3

(~ηi)/M3,iD
n
d~ei,σ2

(~ηi), and ⊥ with probability 1− p.
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• V accepts iff ~ti + d~ci = A~sm,i + B~sr,i + ~se,i mod q, ‖~sr,i‖∞ ≤ 12σ2,
and ‖~se,i‖∞ ≤ 12σ3 for i = 1, 2, 3, and ~sm,3 = ~sm,1 + ~sm,2.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 3.3. The protocol is a Σ′-protocol with completeness error close to
1

2β+1 + 2β
(2β+1)

∏3
i=1M2,iM3,i

overwhelmingly for the relations.

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the
protocol is not aborted by the prover, and the accepting probability is
close to 1

2β+1 + 2β
(2β+1)

∏3
i=1M2,iM3,i

overwhelmingly.

• Special Soundness: Given commitments ~c1,~c2,~c3 and a pair of accepting
transcripts

(~t1,~t2,~t3, d, (~sm,1, ~sm,2, ~sm,3, ~sr,1, ~sr,2, ~sr,3, ~se,1, ~se,2, ~se,3))

(~t′1,~t
′
2,~t
′
3, d, (~s

′
m,1, ~s

′
m,2, ~s

′
m,3, ~s

′
r,1, ~s

′
r,2, ~s

′
r,3, ~s

′
e,1, ~s

′
e,2, ~s

′
e,3))

where d 6= d′, we can extract a valid opening information of ~c1, ~c2 and
~c3.
• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable
distribution.

We can prove completeness, special soundness, and zero knowledge of this
protocol as in the previous case, proof of linear relation. The only difference is
~sm,3 = ~sm,1 +~sm,2. In this case, the simulator set the ~s′m,3 as ~s′m,3 = ~s′m,1 +~s′m,2
for ~s′m,1, ~s

′
m,2 ← Zlq. �

4. Concluding Remarks

In this work, we give spLWE-based constructions for zero-knowledge pro-
tocols of knowledge of committed messages, and for proving linear, and sum
relations among such messages. In order to achieve negligible soundness error in
our protocols, we use rejection sampling. Finally, we address an open problem
stated in previous work in [10].

For future works, we consider the construction of additional zero-knowledge
protocols for proving the bound of error in spLWE. In terms of efficiency, we
would like to more concretely analyze the error size in the commitment scheme
and zero-knowledge protocols. The more commitments are added, the bigger
the error size grows. As a result, the verification algorithm does not accept the
input as a valid one.
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