DOI QR코드

DOI QR Code

A Review on Ocean Acidification and Factors Affecting It in Korean Waters

우리나라 주변 바다의 산성화 현황과 영향 요인 분석

  • Kim, Tae-Wook (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Dongseon (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • Park, Geun-Ha (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • Ko, Young Ho (OJEong Resilience Institute, Korea University) ;
  • Mo, Ahra (Division of Environmental Science and Ecological Engineering, Korea University)
  • 김태욱 (고려대학교 환경생태공학부) ;
  • 김동선 (한국해양과학기술원 해양환경연구센터) ;
  • 박근하 (한국해양과학기술원 해양환경연구센터) ;
  • 고영호 (고려대학교 오정리질리언스 연구원) ;
  • 모아라 (고려대학교 환경생태공학부)
  • Received : 2022.01.26
  • Accepted : 2022.02.14
  • Published : 2022.02.28

Abstract

The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

해양은 대기로 배출된 이산화탄소의 30% 가량을 흡수하여 대기 중 이산화탄소 농도를 감소시키는 역할을 하였으나, 이 때문에 해양의 pH와 탄산염 이온(CO32-)이 감소하는 해양산성화 현상을 겪고 있다. 본 논문에서는 황해 연안역의 신규 관측자료를 타 해역에서 획득된 기존 연구자료와 합쳐서 우리나라 주변 해역의 해양산성화 현황을 파악하고자 하였다. 우리나라 주변의 황해, 동해, 동중국해(남해 포함)는 대기 중 이산화탄소를 흡수하고 있으나, 외해 대부분의 해역에서 해양산성화의 지표인 아라고나이트 포화도가 1 이상인 것으로 나타났다. 남해 동부 연안역에서는 담수 공급으로 인한 희석과 성층 형성, 생물에 의한 유기물 생성과 분해가 표층과 저층의 계절적 해양산성화 변동에 큰 영향을 끼쳤다. 진해만은 빈산소화 현상, 광양만은 담수로 인한 희석으로 여름철 광범위한 해역에서 아라고나이트 포화도가 1 미만으로 감소하여, 탄산칼슘 패각(CaCO3 shell)을 가진 생물들에게 잠재적 위협이 될 것으로 보고되었다. 하지만 담수 유입이 많은 황해 연안역에서는 진해만과 광양만과 같이 뚜렷하고 광범위한 산성화는 발견되지 않았기 때문에, 연안역에서는 각 해역별 특성에 따라 해양산성화의 양상을 진단해야 할 필요가 있었다. 우리나라 동해 남서부 해역의 계절적 용승 현상 역시 해양산성화에 영향을 미칠 수 있다. 이런 계절적 요인과 더불어, 대기 중의 이산화탄소 및 산성물질이 해양으로 계속 유입되면서, 우리나라 바다의 아라고나이트 포화도가 지속적으로 감소할 것으로 예상된다. 따라서 해양산성화로부터 수산자원과 해양생태계를 보호하기 위해 향후 체계적인 해양산성화 모니터링을 강화해야 할 것이다.

Keywords

Acknowledgement

본 논문의 개선을 위해 의견을 제시해 주신 세 분의 심사위원께 감사드립니다. 그리고 관측자료 활용을 허락하여 주신 포항공과대학교와 한국해양과학기술원, 해양관측에 많은 도움을 주신 국립수산과학원과 해양환경공단에 감사드립니다. 이 논문은 연구재단(NRF-2019R1A2C2089994)의 지원을 받아 작성되었습니다.

References

  1. Albright, R., Takeshita, Y., Koweek, D. A., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K., 2018, Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature, 555(7697), 516-519. https://doi.org/10.1038/nature25968
  2. Anderson, L.A. and Sarmiento, J.L., 1994, Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles, 8, 65-80. https://doi.org/10.1029/93GB03318
  3. Bakker, D.C.E., Pfeil, B., Landa, C.S., Metzl, N., O'Brien, K.M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S.D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.R., Balestrini, C.F., Barbero, L., Bates, N.R., Bianchi, A.A., Bonou, F., Boutin, J., Bozec, Y., Burger, E.F., Cai, W.-J., Castle, R.D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R.A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman- Mountford, N.K., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M.P., Hunt, C.W., Huss, B., Ibanhez, J.S.P., Johannessen, T., Keeling, R., Kitidis, V., Kortzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschutzer, P., Lauvset, S.K., Lefevre4, N., Monaco, C.L., Manke, A., Mathis, J.T., Merlivat, L., Millero, F.J., Monteiro, F.M.S., Munro, D.R., Murata, A., Newberger, T., Omar, A.M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L.L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K.F., Sutherland, S.C., Sutton, A.J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S.M.A.C., Vandemark, D., Ward, B., Watson, A.J., and Xu, S., 2016, A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data. 8, 383-413.
  4. Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K., 2015, Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography, 28(2), 146-159. https://doi.org/10.5670/oceanog.2015.63
  5. Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., Aristegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S.R., Rinkevich, B., Suga, T., Tagliabue, A., and Williamson, P., 2019, Changing Ocean, Marine Ecosystems, and Dependent Communities. In Portner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. and Weyer, N.W. (eds.), IPCC special report on the ocean and cryosphere in a changing climate.
  6. Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J., Schulz, K., Ludwig, A., and Riebesell, U., 2013, Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences, 10(2), 719-731. https://doi.org/10.5194/bg-10-719-2013
  7. Byrne, R. H., Mecking, S., Feely, R. A., and Liu, X., 2010, Direct observations of basin-wide acidification of the North Pacific Ocean. Geophysical Research Letters, 37(2), L02601, doi:10.1029/2009GL040999.
  8. Cai, W. J., Dai, M., and Wang, Y., 2006, Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12), L12603, doi:10.1029/2006GL026219.
  9. Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P. Guo, X., Gundersen, K., D, M., and Gong, G. C., 2011, Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11), 766-770. https://doi.org/10.1038/ngeo1297
  10. Caldeira, K. and Wickett, M. E., 2003, Anthropogenic carbon and ocean pH. Nature, 425(6956), 365-365. https://doi.org/10.1038/425365a
  11. Chen, C. T. A., and Borges, A. V., 2009, Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 578-590. https://doi.org/10.1016/j.dsr2.2009.01.001
  12. Chen, C. T. A., Lui, H. K., Hsieh, C. H., Yanagi, T., Kosugi, N., Ishii, M., and Gong, G. C., 2017, Deep oceans may acidify faster than anticipated due to global warming. Nature Climate Change, 7(12), 890-894. https://doi.org/10.1038/s41558-017-0003-y
  13. Choi, J. K., Ahn, J. H., Son, Y. B., Hwang, D. J., and Lee, S. J., 2020b, Application of GOCI to the estimates of primary productivity in the coastal waters of the East Sea. Korean Journal of Remote Sensing, 36, 237-247. (in Korean) https://doi.org/10.7780/KJRS.2020.36.2.2.2
  14. Choi,. Y., Cho, S., and Kim, D., 2020a, Seasonal variation in aragonite saturation states and the controlling factors in the southeastern Yellow Sea. Marine Pollution Bulletin, 150, 110695. https://doi.org/10.1016/j.marpolbul.2019.110695
  15. Choi, Y., Kim, D., Cho, S., and Kim, T.-W., 2019, Southeastern Yellow Sea as a sink for atmospheric carbon dioxide. Marine Pollution Bulletin, 149, 110550. https://doi.org/10.1016/j.marpolbul.2019.110550
  16. Choi, Y., Kim, D., Noh, J. H., and Kang, D. J., 2021, Contribution of Changjiang River discharge to CO2 uptake capacity of the northern East China Sea in August 2016. Continental Shelf Research, 215, 104336. https://doi.org/10.1016/j.csr.2020.104336
  17. Choi, Y., Kim, T. H., Kim, D., and Kang, D. J., 2022, Spatiotemporal variability of aragonite saturation state in the northern East China Sea. Journal of Geophysical Research: Oceans, e2021JC017593, https://doi.org/10.1029/ 2021JC017593.
  18. Chou, W. C., Gong, G. C., Hung, C. C., and Wu, Y. H., 2013, Carbonate mineral saturation states in the East China Sea: present conditions and future scenarios. Biogeosciences, 10(10), 6453-6467. https://doi.org/10.5194/bg-10-6453-2013
  19. Diaz, R.J. and Rosenberg R., 2008, Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929. https://doi.org/10.1126/science.1156401
  20. Dickson, A.G., Sabine, C.L., and Christian, J.R., 2007, Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 p.
  21. Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009, Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1, 169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  22. Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J. F., and Rasch, P. J., 2007, Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences, 104(37), 14580-14585. https://doi.org/10.1073/pnas.0702218104
  23. Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M., 2009, Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences, 106(30), 12235-12240. https://doi.org/10.1073/pnas.0906044106
  24. Ekstrom, J. A., Suatoni, L., Cooley, S. R., Pendleton, L. H., Waldbusser, G. G., Cinner, J. E., Ritter, J., Langdon, C., Hooidonk, R., Gledhill, D., Wellman, K., Beck, M. W., Brander, L. M., Rittschof, D., Doherty, C., Edwards, P. E. T., and Portela, R., 2015, Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 5(3), 207-214. https://doi.org/10.1038/nclimate2508
  25. Eyring, V., Gillett, N.P., Achuta Rao, K.M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P.J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., and Sun, Y., 2021, Human Influence on the Climate System. In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., 2021, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press.
  26. Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B., 2008, Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320(5882), 1490-1492. https://doi.org/10.1126/science.1155676
  27. Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L., and Westman, B. A., 2004, Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography, 49(3), 727-734. https://doi.org/10.4319/lo.2004.49.3.0727
  28. Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Van Heuven, S., Hoppema, M., Key, R. M., Kozyr, A., Lauvset, S. K., Monaco, C. L., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R., 2019, The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432), 1193-1199. https://doi.org/10.1126/science.aau5153
  29. Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plattner, G. K., 2013, Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences, 10(1), 193-216. https://doi.org/10.5194/bg-10-193-2013
  30. Hennige, S., Roberts, J. M., and Williamson, P., 2014, An updated synthesis of the impacts of ocean acidification on marine biodiversity. CBD Technical Series 75. 99 p.
  31. Heuer, R. M. and Grosell, M., 2014, Physiological impacts of elevated carbon dioxide and ocean acidification on fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(9), R1061-R1084.
  32. Ishii, M., Rodgers, K. B., Inoue, H. Y., Toyama, K., Sasano, D., Kosugi, N., Ono, H., Enyo, K., Nakano, T., Iudicone, D., Blanke, B., Aumont, O., and Feely, R. A., 2020, Ocean acidification from below in the Tropical Pacific. Global Biogeochemical Cycles, 34(8), e2019GB006368, https://doi.org/10.1029/2019GB006368.
  33. Jang, E., Im, J., Park, G. H., and Park, Y. G., 2017, Estimation of fugacity of carbon dioxide in the East Sea using in situ measurements and Geostationary Ocean Color Imager satellite data. Remote Sensing, 9(8), 821. https://doi.org/10.3390/rs9080821
  34. Kang, D. J., Kim, J. Y., Lee, T., and Kim, K. R.., 2004, Will the East/Japan Sea become an anoxic sea in the next century?. Marine Chemistry, 91(1-4), 77-84. https://doi.org/10.1016/j.marchem.2004.03.020
  35. Kaplan, M. B., Mooney, T. A., McCorkle, D. C., and Cohen, A. L., 2013, Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLOS ONE, 8(5), e63714. https://doi.org/10.1371/journal.pone.0063714
  36. Kim, C. H., and Kim, K., 1983, Characteristics and origin of the cold water mass along the east coast of Korea. Journal of the Korean Society of Oceanography, 18(1), 73-83. (in Korean)
  37. Kim, D., Choi, S. H., Yang, E. J., Kim, K. H., Jeong, J. H., and Kim, Y. O., 2013a, Biologically mediated seasonality of aragonite saturation states in Jinhae Bay, Korea. Journal of Coastal Research, 29(6), 1420-1426. https://doi.org/10.2112/JCOASTRES-D-12-00205.1
  38. Kim, D., Park, G. H., Baek, S. H., Choi, Y., and Kim, T.- W., 2018, Physical and biological control of aragonite saturation in the coastal waters of southern South Korea under the influence of freshwater. Marine Pollution Bulletin, 129(1), 318-328. https://doi.org/10.1016/j.marpolbul.2018.02.038
  39. Kim, D., Yang, E. J., Baek, S. H., Kim, K. H., Jeong, J. H., and Kim, Y. O., 2014a, Aragonite undersaturation in Gwangyang Bay, South Korea: effects of fresh water input. Ocean Science Journal, 49(3), 223-230. https://doi.org/10.1007/s12601-014-0022-9
  40. Kim, J. M., Lee, K., Han, I. S., Lee, J. S., Choi, Y. H., Lee, J. H., and Moon, J. Y., 2020, Anthropogenic nitrogen-induced changes in seasonal carbonate dynamics in a productive coastal environment. Geophysical Research Letters, 47(17), e2020GL088232, https://doi.org/10.1029/2020GL088232.
  41. Kim, J. Y., Kang, D. J., Lee, T., and Kim, K. R., 2014b, Long-term trend of CO2 and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11(9), 2443-2454. https://doi.org/10.5194/bg-11-2443-2014
  42. Kim, K. R., Kim, G., Kim, K., Lobanov, V., Ponomarev, V., and Salyuk, A., 2002, A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea. Geophysical Research Letters, 29(8), doi:10.1029/2001GL014498.
  43. Kim, T.-W., Lee, K., Duce, R., and Liss, P., 2014c, Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophysical Research Letters, 41(9), 3156-3162, doi:10.1002/2014GL059665.
  44. Kim, T.-W., Lee, K, Lee, C., Jeong, H.-D., Suh, Y.-S., Lim, W., Kim, K.Y., and Jeong, H.-J, 2013b, Interannual nutrient dynamics in Korean coastal waters. Harmful Algae, 30, S15-S27. https://doi.org/10.1016/j.hal.2013.10.003
  45. Ko, Y. H., Lee, K., Eom, K. H., and Han, I. S., 2016, Organic alkalinity produced by phytoplankton and its effect on the computation of ocean carbon parameters. Limnology and Oceanography, 61(4), 1462-1471. https://doi.org/10.1002/lno.10309
  46. Ko, Y. H., Park, G.-H., Kim, D., and Kim, T. W., 2021, Variations in seawater pCO2 associated with vertical mixing during tropical cyclone season in the northwestern subtropical Pacific Ocean. Frontiers in Marine Science, 8:679314, doi:10.3389/fmars.2021.679314.
  47. Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P., 2013, Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19(6), 1884-1896. https://doi.org/10.1111/gcb.12179
  48. Landschuetzer, P., Gruber, N., and Bakker, D. C., 2016, Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30(10), 1396-1417. https://doi.org/10.1002/2015GB005359
  49. Landschutzer, P., Laruelle, G. G., Roobaert, A., and Regnier, P., 2020, A uniform pCO2 climatology combining open and coastal oceans. Earth System Science Data, 12(4), 2537-2553. https://doi.org/10.5194/essd-12-2537-2020
  50. Lauvset, S. K., Gruber, N., Landschutzer, P., Olsen, A., and Tjiputra, J., 2015, Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12(5), 1285-1298. https://doi.org/10.5194/bg-12-1285-2015
  51. Lee, C.H., Lee, K., Ko, Y. H., and Lee, J.-S., 2021, Contribution of marine phytoplankton and bacteria to alkalinity: An uncharacterized component. Geophysical Research Letters, 48, e2021GL093738. https://doi.org/10.1029/2021GL093738.
  52. Lee, J. H., Pang, I. C., and Moon, J. H., 2016, Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011. Journal of Geophysical Research: Oceans, 121(6), 3777-3789, doi:10.1002/2016JC011658.
  53. Lee, K., Sabine, C. L., Tanhua, T., Kim, T. W., Feely, R. A., and Kim, H. C., 2011, Roles of marginal seas in absorbing and storing fossil fuel CO2. Energy & Environmental Science, 4(4), 1133-1146. https://doi.org/10.1039/c0ee00663g
  54. Martino, M., Hamilton, D., Baker, A. R., Jickells, T. D., Bromley, T., Nojiri, Y., Quack, B., and Boyd, P. W., 2014, Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity. Global Biogeochemical Cycles, 28(7), 712-728, doi:10.1002/2013GB004794.
  55. Nagelkerken, I. and Connell, S. D., 2015, Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences, 112(43), 13272-13277. https://doi.org/10.1073/pnas.1510856112
  56. Nagelkerken, I., Russell, B. D., Gillanders, B. M., and Connell, S. D., 2015, Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change, 6(1), 89-93. https://doi.org/10.1038/nclimate2757
  57. Nam, S., Yoon, S. T., Park, J. H., Kim, Y. H., and Chang, K. I., 2016, Distinct characteristics of the intermediate water observed off the east coast of Korea during two contrasting years. Journal of Geophysical Research: Oceans, 121(7), 5050-5068, doi:10.1002/2015JC011593.
  58. Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Reimer, E. M., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool, A., 2005, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681-686. https://doi.org/10.1038/nature04095
  59. Park, G.-H., Lee, S. E., Kim, Y. I., Kim, D., Lee, K., Kang, J., Kim, Y. H., Kim, H., Park, S., and Kim, T. W., 2019, Atmospheric deposition of anthropogenic inorganic nitrogen in airborne particles and precipitation in the East Sea in the northwestern Pacific Ocean. Science of the Total Environment, 681, 400-412. https://doi.org/10.1016/j.scitotenv.2019.05.135
  60. Park, G.-H., Lee, K., Tishchenko, P., Min, D.-H., Warner, M. J., Talley, L. D., Kang, D.-J., and Kim, K.-R. 2006, Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry, Global Biogeochemical Cycles, 20, GB4013, doi:10.1029/2005GB002676.
  61. Park, G.-H., Lee, K., and Tishchenko, P. 2008, Sudden, considerable reduction in recent uptake of anthropogenic CO2 by the East/Japan Sea, Geophysical Research Letters, 35, L23611, doi:10.1029/2008GL036118.
  62. Park, K., and Kim, K. R., 2010, Unprecedented coastal upwelling in the East/Japan Sea and linkage to longterm large-scale variations. Geophysical Research Letters, 37(9), L09603, doi:10.1029/2009GL042231.
  63. Park, S., Lee, T., and Jo, Y. H., 2016, Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a neural network model. The Sea, 21(1), 1-10. (in Korean) https://doi.org/10.7850/JKSO.2016.21.1.1
  64. Park, Y.-G., Park, K.H., Im, J., Lee, W.K., Park, J.H., Noh, J.D., Gu, B.K., 2018, Development of satellite-based ocean carbon parameter estimation models for Korea waters. 722 p. (in Korean)
  65. Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., Wit, C. A., Hughes, T., Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen P., and Foley, J. A., 2009, A safe operating space for humanity. Nature, 461(7263), 472-475. https://doi.org/10.1038/461472a
  66. Roy, T., Lonbard, F., Bopp, L., and Gehlen, M., 2015, Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera. Biogeosciences, 12, 2873-2889. https://doi.org/10.5194/bg-12-2873-2015
  67. Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F., 2004, The oceanic sink for anthropogenic CO2. Science, 305(5682), 367-371. https://doi.org/10.1126/science.1097403
  68. Salisbury, J., Green, M., Hunt, C., and Campbell, J., 2008, Coastal acidification by rivers: a threat to shellfish?. Eos, Transactions American Geophysical Union, 89(50), 513-513. https://doi.org/10.1029/2008EO500001
  69. Seo, H. S., and Kim, D. S., 2020, Effect of El Nino and La Nina on the coastal upwelling in East Sea, South Korea. Journal of the Korean Society of Marine Environment & Safety, 26(1), 75-83. (in Korean) https://doi.org/10.7837/kosomes.2020.26.1.075
  70. Seok, M. W., Kim, D., Park, G. H., Lee, K., Kim, T. H., Jung, J., Kim, K., Park, K. T., Kim, Y. H., Mo, A., Park, S., Ko, Y. H., Kang, J., Kim, H., and Kim, T.-W., 2021, Atmospheric deposition of inorganic nutrients to the Western North Pacific Ocean. Science of The Total Environment, 793, 148401. https://doi.org/10.1016/j.scitotenv.2021.148401
  71. Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa, H., Ishii, M., Midorikawa, T., Nojiri, Y., and De Baar, H. J. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10), 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009
  72. Theodosi, C., Markaki, Z., Tselepides, A., and Mihalopoulos, N., 2010, The significance of atmospheric inputs of soluble and particulate major and trace metals to the eastern Mediterranean seawater. Marine Chemistry, 120, 154-163. https://doi.org/10.1016/j.marchem.2010.02.003
  73. Wigley, T., 1983, The pre-industrial carbon dioxide level. Climatic Change, 5(4), 315-320. https://doi.org/10.1007/BF02423528
  74. Wu, L., Zhang, Q., and Jiang, Z., 2006, Three Gorges Dam affects regional precipitation. Geophysical Research Letters, 33(13), L13806, doi:10.1029/2006GL026780.
  75. Yang, Z. S., Wang, H. J., Saito, Y., Milliman, J. D., Xu, K., Qiao, S., and Shi, G., 2006, Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resources Research, 42(4), W04407, doi:10.1029/2005WR003970.
  76. Yoon, S. T., Chang, K. I., Nam, S., Rho, T., Kang, D. J., Lee, T., Park, K. A., Lobanov, V., Kaplunenko, D., Tishchenko, P., and Kim, K. R., 2018, Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Reports, 8(1), 1-10.
  77. Yun, J. Y., Magaard, L., Kim, K., Shin, C. W., Kim, C., and Byun, S. K., 2004, Spatial and temporal variability of the North Korean Cold Water leading to the nearbottom cold water intrusion in Korea Strait. Progress in Oceanography, 60(1), 99-131. https://doi.org/10.1016/j.pocean.2003.11.004