DOI QR코드

DOI QR Code

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano

백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가

  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University) ;
  • Chang, Cheolwoo (Volcano Specialized Research Center (VSRC), Pusan National University) ;
  • Pan, Bo (National Observation and Research Station of Jilin Changbaishan Volcano)
  • 윤성효 (부산대학교 지구과학교육과) ;
  • 장철우 (화산특화연구센터) ;
  • 판보 (중국지진국 지질연구소 活动火山 与灾害硏究室)
  • Received : 2022.02.04
  • Accepted : 2022.02.11
  • Published : 2022.02.28

Abstract

This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

백두산 성층화산체와 천지 칼데라 외륜산 정상부에 분포하는 홀로세에 분화한 규장질 화산암 시료와 플라이스토세 개마용암대지와 장백산순상화산체의 고철질 화산암 시료의 암석화학적 특징 분석을 통해 지체구조적 위치를 알아보았다. 백두산 화산지대에서 초기 고철질 분출물들은 개마용암대지와 장백산순상화산체를 형성하였으며, 대부분 알칼리계열의 현무암에서 조면현무암 또는 서브-알칼리(쏠레이아이트) 현무암에서 현무암질안산암의 성분이며, 백두산 성층화산체와 천지 칼데라 정상부 부근의 홀로세 분출물은 대부분 규장질의 조면암에서 유문암 성분이다. 고철질 화산암류와 규장질 화산암류 사이의 SiO2 54-62 wt.%가 결핍된 쌍모식 조성을 나타낸다. 이는 마그마작용이 지각내 신장형 지체구조적 위치에서 발생하였음을 지시하는 단서가 될 수 있다. 지구조판별도에서 고철질 화산암류들은 판내부 또는 판내부 알칼리암과 쏠레이아이트암의 영역에 구분되어 도시되는데 이는 TAS성분도의 결과와 잘 일치한다. 규장질 화산암류들은 규장질 화강암류에 적용하는 판별도에서 판내부화강암(WPG)의 지체구조적 위치에 도시된다. 지구조 판별도에서 판의 섭입과 관련한 도호 또는 대륙연변호의 영역에는 도시되지 않으며, 모두 판내부 영역에 도시된다. 미량원소 함량을 원시맨틀값으로 표준화한 거미도에서 섭입대 화산암류에서 특징적으로 나타나는 Nb, Ti 의 부(-) 이상을 나타내지 않으며, OIB와 유사한 패턴을 나타낸다. 미량원소 함량 조성은 섭입대에서 유래된 마그마 작용에 연관된 의미있는 증거를 나타내지 않는다. 이는 백두산화산지대의 마그마작용이 판내부 환경에서 있었음을 지시한다. 이들 화산암류의 판내부 지체구조 위치는 이 지역에서 발생하는 천발지진의 진원 깊이와도 조화적이다. 백두산화산지대의 화산암석들은 신생대 동안 맨틀 물질의 용승에 의한 판내부 화산활동의 결과로 해석된다.

Keywords

Acknowledgement

이 논문은 2019년도 한국연구재단의 국제협력사업 (한중협력사업: 협력연구)의 지원을 받아 연구(과제번호; 2019K2A9A2A06025294) 되었으며, 건설적인 비평과 조언을 주신 심사위원에게 감사드립니다.

References

  1. Baier, J., Audetat, A. and Keppler, H., 2008, The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letter, 267, 290-300. https://doi.org/10.1016/j.epsl.2007.11.032
  2. Chen, Y., Zhang, Y., Graham, D., Su, S. and Deng, J., 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China. Lithos, 96, 108-126. https://doi.org/10.1016/j.lithos.2006.09.015
  3. Kuritani, T., Kimura, J., Miyamoto, T., Wei, H. and Shimano, T., 2009, Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: Implications from the Changbaishan shield basalts, northeast China. Lithos, 112, 247-258. https://doi.org/10.1016/j.lithos.2009.02.007
  4. Kuritani, T., Ohtani, E. and Kimura, J.I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience Letters, 713-716.
  5. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkalis-silica diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
  6. Lee, S.H., Jang, E.S. and Lee, H.M., 2012, A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baegdu. Journal of Korean Earth Science Society, 33(3), 280-293. https://doi.org/10.5467/JKESS.2012.33.3.280
  7. Le Maitre, R.W., 1989, A propose by the IUGS subcomission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Science, 31, 243-255. https://doi.org/10.1080/08120098408729295
  8. Liu, J., Han, J. and Fyfe, W., 2001, Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K.Ar geochronology. Tectonophysics, 339, 385-401. https://doi.org/10.1016/S0040-1951(01)00132-9
  9. Liu, R., Sun, J. and Chen, W., 1983, Cenozoic basalts in North China their distribution, geochemical characteristics and tectonic implications. Geochemistry, 2, 17-33. https://doi.org/10.1007/BF03180353
  10. Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
  11. Ohtani, E. and Zhao, D., 2009, The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge. Russian Geology and Geophysics, 50, 1073-1078. https://doi.org/10.1016/j.rgg.2009.11.006
  12. Pan, B., Silva, S.L., Xu, J., Chen, Z., Miggins, D.P. and Wei, Q., 2017, The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics. Journal of Volcanology and Geothermal Research, 343, 45-59. https://doi.org/10.1016/j.jvolgeores.2017.05.029
  13. Pearce, J.A., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, In: Hawkesworth, C.J. and Norry, M.J. eds. Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, 230-249.
  14. Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984, Trace element discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  15. Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33-47. https://doi.org/10.1007/BF00375192
  16. Sun, S.-S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. Eds., Magmatism in Ocean Basins. Geological Society London Special Publications, London, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  17. Tang, Y., Obayashi, M., Niu, F., Grand, S.P., Chen, Y.J., Kawakatsu, H., Tanaka, S., Ning, J. and Ni, J.F., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7, 470-475. https://doi.org/10.1038/ngeo2166
  18. Wei, H., 2010, Magma up-moving process within the magma prism beneath the Changbaishan volcanoes. Earth Science Frontiers, 17(1), 11-23.
  19. Wei, H., Liu, G. and Gill, J., 2013, Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions. Bulletin of Volcanology, 75, 706: 1-14.
  20. Wood, D. A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
  21. Xu, J.D., Pan, B., Liu, T.Z., Hajdas, I., Zhao, B., Yu, H.M., Liu, R.X. and Zhao P., 2013, Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wigglematch dating. Geophysical Research Letters, 40, 54-59. https://doi.org/10.1029/2012GL054246
  22. Xu, J., Liu, G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan A., Pan, B., Lin, X. and Liu, J., 2012, Recent unrest of Changbaishan volcano, northeast China: A precursor of a future eruption?. Geophysical Research Letters, 39, 1-7.
  23. Ye, H., Zhang, B. and Mao, F., 1987, The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133, 217-227. https://doi.org/10.1016/0040-1951(87)90265-4
  24. Yun, S.H., 2013, Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano. Journal of Korean Earth Science Society, 34, 456-469. https://doi.org/10.5467/JKESS.2013.34.6.456
  25. Yun, S.H., 2015, Probalbility of southwards dispersal of volcanic ash from Mt. Baekdu volcano. Proceedings of the Annual Joint Conference, the Mineralogical Society of Korea and the Petrological Society of Korea, May 28-29, 2015, Andong, Korea, 186-188.
  26. Yun, S.H. and Koh, J.S., 2014, Petrochemical characteristics of volcanic rocks of historic era at Mt. Baekdusan. Journal of the Geological Society of Korea. 50, 753-769. https://doi.org/10.14770/jgsk.2014.50.6.753
  27. Yun, S.H., Koh, J.S. and Chang C., 2018, Geochemical composition of volcanic ash from historical eruptions of Mt. Baekdu, Korea. Journal of Petrological Society of Korea, 27(1), 37-47. https://doi.org/10.7854/JPSK.2018.27.1.37
  28. Yun, S.H. and Lee, J.H., 2012, Analysis of unrest signs of activity at the Baegdusan volcano. Journal of Petrological Society of Korea, 21(1), 1-12. https://doi.org/10.7854/JPSK.2012.21.1.001
  29. Yun, S.H., Won, C.K. and Lee, M.W., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paektu area. Journal of Geological Society of Korea, 29, 291-307.
  30. Yun, S.H., Won, C.K. and Lee, M.W., 2004, Volcanic activity and formation process of Mt. Baegdu. Proceedings of the 2004 Symposium (Igneous Activity in Korea) of the Petrological Society of Korea. 124-136.
  31. Zhao, D., Lei, J. and Tang, R., 2004, Origin of the Changbai intraplate volcanism in Northeast China: evidence from seismic tomography. Chinese Science Bulletin, 49, 1401-1408. https://doi.org/10.1360/04wd0125
  32. Zhao, D., Tian, Y., Lei, J., Liu, L. and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interios, 173, 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
  33. Zhou, X.H. and Armstrong, R.L., 1982, Cenozoic volcanic rocks of eastern China: Secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 58, 301-329. https://doi.org/10.1016/0012-821X(82)90083-8
  34. Zhou, H., Fan, Q. and Yao, Y., 2008, U-Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chemical Geology, 255, 134-142. https://doi.org/10.1016/j.chemgeo.2008.06.022