DOI QR코드

DOI QR Code

Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus

  • Ha, Su-Jeong (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University) ;
  • Choi, Yeo-Ok (Bio Research Institute of Biotechnology) ;
  • Kwag, Eun-Bin (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University) ;
  • Kim, Soo-Dam (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University) ;
  • Yoo, Hwa-seung (East West Cancer Center, Seoul Korean Medicine Hospital, Daejeon University) ;
  • Kang, In-Cheol (Department of Biological Science and BioChip Research Center, Hoseo University) ;
  • Park, So-Jung (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University)
  • Received : 2021.10.06
  • Accepted : 2022.02.08
  • Published : 2022.03.31

Abstract

Objectives: Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods: We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results: We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion: These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.

Keywords

Acknowledgement

This research was supported by research grants from Daejeon University (2018).

References

  1. Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998;36(12):1749-800. https://doi.org/10.1016/S0041-0101(98)00126-3
  2. Fry BG. Structure-function properties of venom components from Australian elapids. Toxicon. 1999;37(1):11-32. https://doi.org/10.1016/S0041-0101(98)00125-1
  3. Williams D, Gutierrez JM, Harrison R, Warrell DA, White J, Winkel KD, et al. The global snake bite initiative: an antidote for snake bite. Lancet. 2010;375(9708):89-91. https://doi.org/10.1016/S0140-6736(09)61159-4
  4. Kasai K, Ishikawa T, Nakamura T, Miura T. Antibacterial properties of L-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl Microbiol Biotechnol. 2015;99(19):7847-57. https://doi.org/10.1007/s00253-015-6844-2
  5. Chellapandi P. Structural, functional and therapeutic aspects of snake venom metalloproteinases. Mini Rev Org Chem. 2014;11(1):28-44. https://doi.org/10.2174/1570193X1101140402100707
  6. Chong HP, Tan KY, Tan CH. Cytotoxicity of snake venoms and cytotoxins from two Southeast Asian cobras (Naja sumatrana , Naja kaouthia ): exploration of anticancer potential, selectivity, and cell death mechanism. Front Mol Biosci. 2020;7:583587. https://doi.org/10.3389/fmolb.2020.583587
  7. Dufton MJ, Hider RC. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113-71. https://doi.org/10.3109/10409238309102792
  8. Basus VJ, Song G, Hawrot E. NMR solution structure of an alpha-bungarotoxin/nicotinic receptor peptide complex. Biochemistry. 1993;32(46):12290-8. https://doi.org/10.1021/bi00097a004
  9. Conti-Tronconi BM, Diethelm BM, Wu XD, Tang F, Bertazzon T, Schroder B, et al. Alpha-bungarotoxin and the competing antibody WF6 interact with different amino acids within the same cholinergic subsite. Biochemistry. 1991;30(10):2575-84. https://doi.org/10.1021/bi00224a003
  10. Tzartos SJ, Remoundos MS. Fine localization of the major alpha-bungarotoxin binding site to residues alpha 189-195 of the Torpedo acetylcholine receptor. Residues 189, 190, and 195 are indispensable for binding. J Biol Chem. 1990;265(35):21462-7. https://doi.org/10.1016/S0021-9258(18)45760-2
  11. Radding W, Corfield PW, Levinson LS, Hashim GA, Low BW. Alpha-toxin binding to acetylcholine receptor alpha 179-191 peptides: intrinsic fluorescence studies. FEBS Lett. 1988;231(1):212-6. https://doi.org/10.1016/0014-5793(88)80733-6
  12. Grognet JM, Menez A, Drake A, Hayashi K, Morrison IE, Hider RC. Circular dichroic spectra of elapid cardiotoxins. Eur J Biochem. 1988;172(2):383-8. https://doi.org/10.1111/j.1432-1033.1988.tb13898.x
  13. Kini RM, Evans HJ. Mechanism of platelet effects of cardiotoxins from Naja nigricollis crawshawii (spitting cobra) snake venom. Thromb Res. 1988;52(3):185-95. https://doi.org/10.1016/0049-3848(88)90078-3
  14. Hinman C, Lepisto E, Stevens R, Montgomery I, Rauch H, Hudson R. Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes. Toxicon. 1987;25(9):1011-4. https://doi.org/10.1016/0041-0101(87)90165-6
  15. Takechi M, Tanaka Y, Hayashi K. Binding of cardiotoxin analogue III from Formosan cobra venom to FL cells. FEBS Lett. 1986;205(1):143-6. https://doi.org/10.1016/0014-5793(86)80882-1
  16. Gatineau E, Takechi M, Bouet F, Mansuelle P, Rochat H, Harvey AL, et al. Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry. 1990;29(27):6480-9. https://doi.org/10.1021/bi00479a021
  17. Igari R, Iseki K, Abe S, Syoji M, Sato M, Shimomura K, et al. [Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi "mamushi")--a case report]. Brain Nerve. 2010;62(3):273-7.
  18. Sakurai Y, Shima M, Matsumoto T, Takatsuka H, Nishiya K, Kasuda S, et al. Anticoagulant activity of M-LAO, L-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim Biophys Acta. 2003;1649(1):51-7. https://doi.org/10.1016/S1570-9639(03)00157-2
  19. Yamazaki Y, Koike H, Sugiyama Y, Motoyoshi K, Wada T, Hishinuma S, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur J Biochem. 2002;269(11):2708-15. https://doi.org/10.1046/j.1432-1033.2002.02940.x
  20. Sajevic T, Leonardi A, Krizaj I. Haemostatically active proteins in snake venoms. Toxicon. 2011;57(5):627-45. https://doi.org/10.1016/j.toxicon.2011.01.006
  21. Vaiyapuri S, Wagstaff SC, Watson KA, Harrison RA, Gibbins JM, Hutchinson EG. Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros. PLoS Negl Trop Dis. 2010;4(8):e796. https://doi.org/10.1371/journal.pntd.0000796
  22. Markland FS Jr, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3-18. https://doi.org/10.1016/j.toxicon.2012.09.004
  23. Fox JW, Serrano SM. Timeline of key events in snake venom metalloproteinase research. J Proteomics. 2009;72(2):200-9. https://doi.org/10.1016/j.jprot.2009.01.015
  24. Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969-85. https://doi.org/10.1016/j.toxicon.2005.02.012
  25. Gutierrez J, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9-10):841-50. https://doi.org/10.1016/S0300-9084(00)01163-9
  26. Estevao-Costa MI, Diniz CR, Magalhaes A, Markland FS, Sanchez EF. Action of metalloproteinases mutalysin I and II on several components of the hemostatic and fibrinolytic systems. Thromb Res. 2000;99(4):363-76. https://doi.org/10.1016/S0049-3848(00)00259-0
  27. Kamiguti AS, Markland FS, Zhou Q, Laing GD, Theakston RD, Zuzel M. Proteolytic cleavage of the beta1 subunit of platelet alpha2beta1 integrin by the metalloproteinase jararhagin compromises collagen-stimulated phosphorylation of pp72. J Biol Chem. 1997;272(51):32599-605. https://doi.org/10.1074/jbc.272.51.32599
  28. Smith J, Dangelmaier C, Selak M. Identification of 50 kDa snake venom proteins which specifically inhibit platelet adhesion to collagen. FEBS Lett. 1991;283(2):307-10. https://doi.org/10.1016/0014-5793(91)80615-A
  29. Sanchez EF, Bush LR, Swenson S, Markland FS. Chimeric fibrolase: covalent attachment of an RGD-like peptide to create a potentially more effective thrombolytic agent. Thromb Res. 1997;87(3):289-302. https://doi.org/10.1016/S0049-3848(97)00131-X
  30. Liu CZ, Huang TF. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents plateletcollagen interaction. Arch Biochem Biophys. 1997;337(2):291-9. https://doi.org/10.1006/abbi.1996.9787
  31. Swenson S, Bush LR, Markland FS. Chimeric derivative of fibrolase, a fibrinolytic enzyme from southern copperhead venom, possesses inhibitory activity on platelet aggregation. Arch Biochem Biophys. 2000;384(2):227-37. https://doi.org/10.1006/abbi.2000.2129
  32. Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44(3):227-31. https://doi.org/10.1016/j.toxicon.2004.05.023
  33. Yamazaki Y, Morita T. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity. Curr Pharm Des. 2007;13(28):2872-86. https://doi.org/10.2174/138161207782023775
  34. Sunagar K, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol. 2012;29(7):1807-22. https://doi.org/10.1093/molbev/mss058
  35. Matsunaga Y, Yamazaki Y, Hyodo F, Sugiyama Y, Nozaki M, Morita T. Structural divergence of cysteine-rich secretory proteins in snake venoms. J Biochem. 2009;145(3):365-75. https://doi.org/10.1093/jb/mvn174
  36. Brown RL, Haley TL, West KA, Crabb JW. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels. Proc Natl Acad Sci U S A. 1999;96(2):754-9. https://doi.org/10.1073/pnas.96.2.754
  37. Tasoulis T, Isbister G. A review and database of snake venom proteomes. Toxins (Basel). 2017;9(9):290. https://doi.org/10.3390/toxins9090290
  38. Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci. 2006;63(24):3030-41. https://doi.org/10.1007/s00018-006-6315-0
  39. Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003;42(8):827-40. https://doi.org/10.1016/j.toxicon.2003.11.002
  40. Gutierrez JM, Lomonte B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013;62:27-39. https://doi.org/10.1016/j.toxicon.2012.09.006
  41. Cummings BS. Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol. 2007;74(7):949-59. https://doi.org/10.1016/j.bcp.2007.04.021
  42. Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369-72. https://doi.org/10.1038/sj.bjc.6605007
  43. Ferguson EL, Richardson SC, Duncan R. Studies on the mechanism of action of dextrin-phospholipase A2 and its suitability for use in combination therapy. Mol Pharm. 2010;7(2):510-21. https://doi.org/10.1021/mp900232a
  44. Roberto PG, Kashima S, Marcussi S, Pereira JO, Astolfi-Filho S, Nomizo A, et al. Cloning and identification of a complete cDNA coding for a bactericidal and antitumoral acidic phospholipase A2 from Bothrops jararacussu venom. Protein J. 2004;23(4):273-85. https://doi.org/10.1023/B:JOPC.0000027852.92208.60
  45. Araya C, Lomonte B. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int. 2007;31(3):263-8. https://doi.org/10.1016/j.cellbi.2006.11.007
  46. Maity G, Mandal S, Chatterjee A, Bhattacharyya D. Purification and characterization of a low molecular weight multifunctional cytotoxic phospholipase A2 from Russell's viper venom. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;845(2):232-43. https://doi.org/10.1016/j.jchromb.2006.08.038
  47. Khunsap S, Pakmanee N, Khow O, Chanhome L, Sitprija V, Suntravat M, et al. Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects. J Venom Res. 2011;2:42-51.
  48. Rodrigues RS, da Silva JF, Boldrini Franca J, Fonseca FP, Otaviano AR, Henrique Silva F, et al. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie. 2009;91(4):490-501. https://doi.org/10.1016/j.biochi.2008.12.004
  49. Kessentini-Zouari R, Jebali J, Taboubi S, Srairi-Abid N, Morjen M, Kallech-Ziri O, et al. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Lab Invest. 2010;90(4):510-9. https://doi.org/10.1038/labinvest.2009.137
  50. Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon. 2005;45(8):1099-114. https://doi.org/10.1016/j.toxicon.2005.02.021
  51. Clemetson KJ. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon. 2010;56(7):1236-46. https://doi.org/10.1016/j.toxicon.2010.03.011
  52. Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, et al. Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int. 2014;2014:203639. https://doi.org/10.1155/2014/203639
  53. Kunalan S, Othman I, Syed Hassan S, Hodgson W. Proteomic characterization of two medically important Malaysian snake venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel). 2018;10(11):434. https://doi.org/10.3390/toxins10110434