DOI QR코드

DOI QR Code

Acylase의 처리 시기 및 기간이 다종 생물막 형성에 미치는 영향

Effects of Acylase Treatment Episodes on Multispecies Biofilm Development

  • 이지원 (부산대학교 미생물학과) ;
  • 정소연 (부산대학교 미생물학과) ;
  • 김태관 (부산대학교 미생물학과)
  • Ji Won, Lee (Department of Microbiology, Pusan National University) ;
  • So-Yeon, Jeong (Department of Microbiology, Pusan National University) ;
  • Tae Gwan, Kim (Department of Microbiology, Pusan National University)
  • 투고 : 2022.08.31
  • 심사 : 2022.10.28
  • 발행 : 2022.12.28

초록

Quorum quenching 활성을 나타내는 acylase 효소는 생물막 형성에 중요한 영향을 미친다. 본 연구에서는 acylase 처리 조건(acylase 처리 시기 및 기간)이 다종 생물막(multispecies biofilm) 형성에 미치는 영향을 규명하였다. 서로 다른 속(genus)에 속하는 9종의 박테리아로 구성된 컨소시엄을 사용하여 acylase 처리 조건에 따른 10가지 episode에서 다양한 acylase 농도(1, 5, 10, 20, 50 mg·l-1)에 따라 5일 동안 생물막을 형성시켰다. 각 농도별로 5일 동안 acylase를 처리한 조건에서 acylase의 농도가 증가함에 따라 생물막 형성은 억제되었다(linear regression, Y = -0.05· x + 2.37, p < 0.05, R2 = 0.88). 모든 acylase 농도 조건에서 acylase를 생물막이 형성된 후에 처리한 경우(L1-L4)에 비해서 생물막 형성 시작 단계에 처리한 경우(B1-B4) 생물막 형성이 더 효과적으로 억제되었다(p < 0.05). ANOVA 결과에 따르면 acylase 10 mg·l-1 이상 농도에서 acylase 처리 기간(period)은 acylase 처리 시기(application timings, beginning or later)에 상관없이 생물막 형성에 영향을 미쳤다(p < 0.05). 각 농도별 처리 시기(L1-L4 또는 B1-B4)에서 처리 기간과 생물막 형성 사이의 선형 회귀 분석 결과에 따르면 acylase 10 mg·l-1 이상 농도에서 acylase 처리 기간이 증가함에 따라 생물막 형성은 억제되었다(p < 0.05, 20 mg·l-1 농도의 L1-L4 제외). 시간에 따른 생물막 형성 결과에 따르면 모든 10가지 episode에서 생물막은 시간에 따라 점차 증가했으며(p < 0.05), 배양 시간과 생물막 형성 사이의 선형 회귀 분석 기울기 값은 acylase를 생물막 형성 시작 단계에 처리했을 때 더 낮게 나타났다(p < 0.05). 본 연구 결과는 생물막 형성 억제에 대한 acylase의 처리 시기 및 기간의 중요성을 시사한다.

Acylases can have a significant effect on biofilm formation owing to their quorum quenching activity. In this study, we investigated the effects of acylase treatment episodes on multispecies biofilm development. A consortium composed of 9 species belonging to different genera was allowed to form biofilms for 5 days under various treatment episodes (different treatment periods, 1, 2, 3, or 4 days; and two application timings, beginning or later) at 1, 5, 10, 20 and 50 mg·l-1 acylase concentrations. The acylase treatment for 5 days showed that acylase concentration was negative with biofilm development (linear regression, Y = -0.05·x + 2.37, p < 0.05, R2 = 0.88). Acylase was more effective in reducing biofilm formation when it was applied in the beginning (vs. in later development stage) at all acylase concentrations (p < 0.05). ANOVA indicated that treatment period was significant on biofilm formation in both application timings at ≥ 10 mg·l-1 (p < 0.05). Linearity test results showed that all slope values between period and biofilm were negative in both timings at ≥ 10 mg·l-1 (p < 0.05, except for the later application at 20 mg·l-1). When temporal biofilm dynamics were monitored at 20 mg·l-1, biofilms gradually increased with time at all treatment episodes (p < 0.05), and slope values in linear regression between biofilm and time were lower when acylase was applied in the beginning (p < 0.05). Our findings suggest the importance of the acylase treatment period and application timing on biofilm control.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633. https://doi.org/10.1038/nrmicro2415
  2. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108. https://doi.org/10.1038/nrmicro821
  3. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8: 881-890. https://doi.org/10.3201/eid0809.020063
  4. Watnick P, Kolter R. 2000. Biofilm, city of microbes. J. Bacteriol. 182: 2675-2679. https://doi.org/10.1128/JB.182.10.2675-2679.2000
  5. Choudhary S, Schmidt-Dannert C. 2010. Applications of quorum sensing in biotechnology. Appl. Microbiol. Biotechnol. 86: 1267-1279. https://doi.org/10.1007/s00253-010-2521-7
  6. Siddiqui MF, Rzechowicz M, Harvey W, Zularisam AW, Anthony GF. 2015. Quorum sensing based membrane biofouling control for water treatment: A review. J. Water Process Eng. 7: 112-122. https://doi.org/10.1016/j.jwpe.2015.06.003
  7. Kjelleberg S, Molin S. 2002. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol. 5: 254-258. https://doi.org/10.1016/S1369-5274(02)00325-9
  8. Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36: 990-1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x
  9. Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994
  10. Reading NC, Sperandio V. 2006. Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254: 1-11. https://doi.org/10.1111/j.1574-6968.2005.00001.x
  11. Waters CM, Bassler BL. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
  12. Paul D, Kim YS, Ponnusamy K, Kweon JH. 2009. Application of quorum quenching to inhibit biofilm formation. Environ. Eng. Sci. 26: 1319-1324. https://doi.org/10.1089/ees.2008.0392
  13. Yeon K-M, Cheong W-S, Oh H-S, Lee W-N, Hwang B-K, Lee C-H, et al. 2009. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43: 380-385. https://doi.org/10.1021/es8019275
  14. Jiang W, Xia S, Liang J, Zhang Z, Hermanowicz SW. 2013. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res. 47: 187-196.
  15. Fetzner S. 2015. Quorum quenching enzymes. J. Biotechnol. 201: 2-14. https://doi.org/10.1016/j.jbiotec.2014.09.001
  16. Kim J-H, Choi D-C, Yeon K-M, Kim S-R, Lee C-H. 2011. Enzymeimmobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ. Sci. Technol. 45: 1601-1607. https://doi.org/10.1021/es103483j
  17. Noh YJ, Jeong S-Y, Kim TG. 2021. Effects of different heterotrophic bacteria on phototrophic activity of Chlorella sp. MF1907. Microbiol. Biotechnol. Lett. 49: 101-110. https://doi.org/10.48022/mbl.2009.09001
  18. Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133. https://doi.org/10.1016/j.btre.2014.09.007
  19. Jeong S-Y, Cho K-S, Kim TG. 2018. Adverse effect of the methanotroph Methylocystis sp. M6 on the non-methylotroph Microbacterium sp. NM2. J. Microbiol. Biotechnol. 28: 1706-1715. https://doi.org/10.4014/jmb.1804.04015
  20. O'Toole GA. 2011. Microtiter dish biofilm formation assay. JoVEJ Vis. Exp. e2437.
  21. Dong C-J, Wang L-L, Li Q, Shang Q-M. 2019. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 14: e0223847.
  22. Zheng L, Ren M, Xie E, Ding A, Liu Y, Deng S, Zhang D. 2019. Roles of phosphorus sources in microbial community assembly for the removal of organic matters and ammonia in activated sludge. Front. Microbiol. 10: 1023.
  23. Niu C, Clemmer KM, Bonomo RA, Rather PN. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190: 3386-3392. https://doi.org/10.1128/JB.01929-07
  24. Gray KM. 1997. Intercellular communication and group behavior in bacteria. Trends Microbiol. 5: 184-188. https://doi.org/10.1016/S0966-842X(97)01002-0
  25. Vfselova M, Kholmeckaya M, Klein S, Voronina E, Lipasova V, Metlitskaya A, et al. 2003. Production of N-acylhomoserine lactone signal molecules by gram-negative soil-borne and plantassociated bacteria. Folia Microbiol. 48: 794-798. https://doi.org/10.1007/BF02931516
  26. Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. 2015. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front. Cell Infect. Microbiol. 4: 188.
  27. Xu F, Byun T, Dussen H-J, Duke KR. 2003. Degradation of Nacylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. J. Biotechnol. 101: 89-96. https://doi.org/10.1016/S0168-1656(02)00305-X
  28. Pasquantonio G, Greco C, Prenna M, Ripa C, Vitali L, Petrelli D, et al. 2008. Antibacterial activity and anti-biofilm effect of chitosan against strains of Streptococcus mutans isolated in dental plaque. Int. J. Immonupathol. Pharmacol. 21: 993-997. https://doi.org/10.1177/039463200802100424