DOI QR코드

DOI QR Code

Genomic Analysis of 13 Putative Active Prophages Located in the Genomes of Walnut Blight Pathogen Xanthomonas arboricola pv. juglandis

  • Cao, Zheng (College of Life Science and Technology, Hubei Engineering University) ;
  • Cuiying, Du (College of Life Science and Technology, Hubei Engineering University) ;
  • Benzhong, Fu (College of Life Science and Technology, Hubei Engineering University)
  • Received : 2022.07.11
  • Accepted : 2022.10.04
  • Published : 2022.12.28

Abstract

Xanthomonas arboricola pv. juglandis (Xaj) is a globally important bacterial pathogen of walnut trees that causes substantial economic losses in commercial walnut production. Although prophages are common in bacterial plant pathogens and play important roles in bacterial diversity and pathogenicity, there has been limited investigation into the distribution and function of prophages in Xaj. In this study, we identified and characterized 13 predicted prophages from the genomes of 12 Xaj isolates from around the globe. These prophages ranged in length from 11.8 kb to 51.9 kb, with between 11-75 genes and 57.82-64.15% GC content. The closest relatives of these prophages belong to the Myoviridae and Siphoviridae families of the Caudovirales order. The phylogenetic analysis allowed the classification of the prophages into five groups. The gene constitution of these predicted prophages was revealed via Roary analysis. Amongst 126 total protein groups, the most prevalent group was only present in nine prophages, and 22 protein groups were present in only one prophage (singletons). Also, bioinformatic analysis of the 13 identified prophages revealed the presence of 431 genes with an average length of 389.7 bp. Prokka annotation of these prophages identified 466 hypothetical proteins, 24 proteins with known function, and six tRNA genes. The proteins with known function mainly comprised prophage integrase IntA, replicative DNA helicase, tyrosine recombinase XerC, and IS3 family transposase. There was no detectable insertion site specificity for these prophages in the Xaj genomes. The identified Xaj prophage genes, particularly those of unknown function, merit future investigation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (3170069).

References

  1. Clokie MRJ, Millard AD, Letarov AV, Heaphy S. 2011. Phages in nature. Bacteriophage 1: 31-45. https://doi.org/10.4161/bact.1.1.14942
  2. Scanlan PD. 2017. Bacteria-bacteriophage coevolution in the human gut: Implications for microbial diversity and functionality. Trends Microbiol. 25: 614-623. https://doi.org/10.1016/j.tim.2017.02.012
  3. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. ISME J. 11: 1511-1520. https://doi.org/10.1038/ismej.2017.16
  4. Koskella B, Taylor TB. 2018. Multifaceted impacts of bacteriophages in the plant microbiome. Ann. Rev. Phytopathol. 56: 361-380. https://doi.org/10.1146/annurev-phyto-080417-045858
  5. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25: 730-733. https://doi.org/10.1038/s41591-019-0437-z
  6. Gigante A, Atterbury RJ. 2019. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol. J. 16: 155.
  7. Jones JB, Vallad GE, Iriarte FB, Obradovic A, Wernsing MH, JAckson LE, et al. 2012. Considerations for using bacteriophages for plant disease control. Bacteriophage 2: 208-214. https://doi.org/10.4161/bact.23857
  8. Buttimer C, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8: 34.
  9. Gandon S. 2016. Why be temperate: Lessons from bacteriophage λ. Trends Microbiol. 24: 356-365. https://doi.org/10.1016/j.tim.2016.02.008
  10. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238-276. https://doi.org/10.1128/MMBR.67.2.238-276.2003
  11. Czajkowski R. 2019. May the phage be with you? Prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front. Microbiol. 10: 138. https://doi.org/10.3389/fmicb.2019.00138
  12. Casjens S. 2003. Prophages and bacterial genomics: What have we learned so far? Mol. Microbiol. 49: 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
  13. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, et al. 2009. The defective prophage pool of Escherichia coli O157: Prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5: e1000408.
  14. Javan RR, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. 2019. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat. Commun. 10: 4852.
  15. Zrelovs N, Dislers A, Kazaks A. 2020. Novel Erwinia persicina infecting phage midgardsormr38 within the context of temperate Erwinia phages. Front. Microbiol. 11: 1245.
  16. Fan X, Li Y, He R, Li Q, He W. 2016. Comparative analysis of prophage-like elements in Helicobacter sp. genomes. PeerJ 4: e2012.
  17. Lamichhane JR. 2014. Xanthomonas arboricola diseases of stone fruit, almond, and walnut trees: Progress toward understanding and management. Plant Dis. 98: 1600-1610. https://doi.org/10.1094/pdis-08-14-0831-fe
  18. Domotor D, Frank T, Rakhely G, Doffkay Z, Schneider G, Kovacs T. 2016. Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis. Infect. Genet. Evol. 43: 371-377. https://doi.org/10.1016/j.meegid.2016.06.011
  19. Romero-Suarez S, Jordan B, Heinemann JA. 2012. Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease. World J. Microbiol. Biotechnol. 28: 1917-1927. https://doi.org/10.1007/s11274-011-0992-z
  20. Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, et al. 2015. Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6: 1126.
  21. Song W, Sun HX, Zhang C, Cheng L, Peng Y, Deng Z, et al. 2019. Prophage hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47: W74-W80. https://doi.org/10.1093/nar/gkz380
  22. Okonechnikov K, Golosova O, Fursov M, Team U. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166-1167. https://doi.org/10.1093/bioinformatics/bts091
  23. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  24. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693. https://doi.org/10.1093/bioinformatics/btv421
  25. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.
  26. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Gou H, et al. 2019. Ortho-Venn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47: W52-W58. https://doi.org/10.1093/nar/gkz333
  27. Krumsiek J, Arnold R, Rattei T. 2007. Gepard: A rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23: 1026-1028. https://doi.org/10.1093/bioinformatics/btm039
  28. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. https://doi.org/10.1101/gr.2289704
  29. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: A sequence logo generator. Genome Res. 14: 1188-1190. https://doi.org/10.1101/gr.849004
  30. Assis RAB, Varani AM, Sagawa CHD, Patane JSL, Setubal JC, Uceda-Campos G, et al 2021. A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics 113: 2513-2525. https://doi.org/10.1016/j.ygeno.2021.06.003
  31. Parajuli P, Adamski M, Verma NK. 2017. Bacteriophages are the major drivers of Shigella flexneri serotype 1c genome plasticity: A complete genome analysis. BMC Genomics 18: 722.
  32. Hawkey J, Monk JM, Billman-Jacobe H, Palsson B, Holy KE. 2020. Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genet. 16: e1008931.
  33. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. 2015. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13: 641-650. https://doi.org/10.1038/nrmicro3527