DOI QR코드

DOI QR Code

Evaluation of Antioxidant Potential and UV Protective Properties of Four Bacterial Pigments

  • Rupali, Koshti (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Ashish, Jagtap (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Domnic, Noronha (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Shivali, Patkar (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Jennifer, Nazareth (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Ruby, Paulose (Department of Microbiology, St. Xavier's College (Autonomous)) ;
  • Avik, Chakraborty (Radiation Medicine Centre, Bhabha Atomic Research Centre) ;
  • Pampi, Chakraborty (Department of Microbiology, St. Xavier's College (Autonomous))
  • Received : 2022.05.23
  • Accepted : 2022.08.16
  • Published : 2022.09.28

Abstract

In the present study, four distinctly colored bacterial isolates that show intense pigmentation upon brief ultraviolet (UV) light exposure are chosen. The strains are identified as Micrococcus luteus (Milky yellow), Cryseobacterium pallidum (Yellow), Cryseobacterium spp. (Golden yellow), and Kocuria turfanensis (Pink) based on their morphological and 16S rDNA analysis. Moderate salinity (1.25%), 25-37℃ temperature, and pH of 7.2 are found to be the most favorable conditions of growth and pigment production for all the selected isolates. The pigments are extracted using methanol: chloroform (1:1) and the purity of the pigments are confirmed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Further, Fourier transform infrared (FTIR) and UV-Visible spectroscopy indicate their resemblance with carotenoids and flexirubin family. The antioxidant activities of the pigments are estimated, and, all the pigments have shown significant antioxidant efficacy in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The UV protective property of the pigments is determined by cling-film assay, wherein, at least 25% of UV sensitive Escherichia coli survive with bio-pigments even after 90 seconds of UV exposure compared to control. The pigments also hold a good sun protective factor (SPF) value (1.5-4.9) which is calculated with the Mansur equation. Based on these results, it can be predicted that these bacterial pigments can be further developed into a promising antioxidant and UV-protectant for several biomedical applications.

Keywords

Acknowledgement

The authors would like to thank Dr. Ankan Dutta Chowdhury, Sizouka University for his help in FTIR analysis. The authors also express their sincere gratitude to the Department of Microbiology, St. Xavier's College (Autonomous), Mumbai and Radiation Medicine Centre, BARC, Mumbai for providing laboratory facilities, and their valuable expertise for this work.

References

  1. Sen T, Barrow CJ, Deshmukh SK. 2019. Microbial pigments in the food industry - Challenges and the way forward. Front. Nutr. 6: 7.
  2. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufosse L. 2019. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. Microorganisms 7: 186.
  3. Dufosse L. 2006. Microbial production of food grade pigments. Food Technol. Biotechnol. 44: 313-321.
  4. Soni SK. 2007. Microbes: A source of energy for 21st century. New India publishing agency.
  5. Rao MPN, Xiao M, Li W-J. 2017. Fungal and bacterial pigments: Secondary metabolites with wide applications. Front. Microbiol. 8: 1113.
  6. Tuli HS, Chaudhary P, Beniwal V, Sharma AK. 2015. Microbial pigments as natural color sources: current trends and future perspectives. J. Food Sci. Technol. 52: 4669-4678. https://doi.org/10.1007/s13197-014-1601-6
  7. Diaz-Ruiz C, Montaner B, Perez-Tomas R. 2001. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol. Histopathol. 16: 415-421.
  8. Pandey R, Chander R, Sainis KB. 2007. Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. Indian J. Biochem. Biophys. 44: 295-302.
  9. Kavitha R, Aiswariya S, Ratnavali CM. 2010. Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. Int. J. PharmTech. Res. 2: 784-787.
  10. Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, et al. 2013. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab. Eng. 20: 29-41. https://doi.org/10.1016/j.ymben.2013.08.004
  11. Tanaka T, Shnimizu M, Moriwaki H. 2012. Cancer chemoprevention by carotenoids. Mol. Basel Switz. 17: 3202-3242.
  12. Lampila LE, Wallen SE, Bullerman LB. 1985. A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90: 65-80. https://doi.org/10.1007/BF00436853
  13. Numan M, Bashir S, Mumtaz R, Tayyab S, Rehman NU, Khan AL, et al. 2018. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech. 8: 207.
  14. Soliev AB, Hosokawa K, Enomoto K. 2011. Bioactive pigments from marine bacteria: Applications and physiological roles. Evid. Based Complement. Alternat. Med. 2011: 670349.
  15. Venil CK, Zakaria ZA, Usha R, Ahmad WA. 2014. Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal. Agric. Biotechnol. 3: 103-107. https://doi.org/10.1016/j.bcab.2014.02.006
  16. Rajagopal L, Sundari CS, Balasubramanian D, Sonti RV. 1997. The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett. 415: 125-128. https://doi.org/10.1016/S0014-5793(97)01109-5
  17. Giuliani C, Tani C, Maleci Bini L, Fico G, Colombo R, Martinelli T. 2018. Localization of phenolic compounds in the fruits of Silybum marianum characterized by different silymarin chemotype and altered colour. Fitoterapia 130: 210-218. https://doi.org/10.1016/j.fitote.2018.09.002
  18. Konzen M, De Marco D, Cordova CAS, Vieira TO, Antonio RV, Creczynski-Pasa TB. 2006. Antioxidant properties of violacein: Possible relation on its biological function. Bioorg. Med. Chem. 14: 8307-8313. https://doi.org/10.1016/j.bmc.2006.09.013
  19. Kurjogi MM, Sanakal RD, Kaliwal BB. 2010. Antibiotic susceptibility and antioxidant activity of Staphylococcus aureus pigment staphyloxanthin on carbon tetrachloride (ccl4) induced stress in swiss albino mice. Int. J. Biotechnol. Appl. 2: 33-40. https://doi.org/10.9735/0975-2943.2.2.33-40
  20. Antonisamy P, Kannan P, Aravinthan A, Duraipandiyan V, Valan Arasu M, Ignacimuthu S, et al. 2014. Gastroprotective activity of violacein isolated from Chromobacterium violaceum on Indomethacin-induced gastric lesions in rats: Investigation of potential mechanisms of action. ScientificWorldJournal 2014: 616432.
  21. Afaq F, Zaid MA, Khan N, Dreher M, Mukhtar H. 2009. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp. Dermatol. 18: 553-561. https://doi.org/10.1111/j.1600-0625.2008.00829.x
  22. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. 2018. Oxidative stress, aging, and diseases. Clin. Interv. Aging 13: 757-772. https://doi.org/10.2147/CIA.S158513
  23. Shivprasad S, Page WJ. 1989. Catechol formation and melanization by Na-dependent Azotobacter chroococcum: a protective mechanism for aeroadaptation? Appl. Environ. Microbiol. 55: 1811-1817. https://doi.org/10.1128/aem.55.7.1811-1817.1989
  24. To KY, Lai EM, Lee LY, Lin TP, Hung CH, Chen CL, et al. 1994. Analysis of the gene cluster encoding carotenoid biosynthesis in Erwinia herbicola Eho13. Microbiology 140: 331-339. https://doi.org/10.1099/13500872-140-2-331
  25. Krishnaiah D, Sarbatly R, Bono A. 2007. Phytochemical antioxidants for health and medicine - A move towards nature. Biotechnol. Mol. Biol. Rev. 1: 97-104.
  26. Mohana D, Thippeswamy S, Abhishek R. 2013. Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiat. Prot. Environ. 36: 168.
  27. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. https://doi.org/10.1128/AEM.02272-07
  28. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  29. Shalaby E, Shanab S. 2013. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Mar. Sci. 42: 556-564.
  30. Dutra EA, Oliveira DAG da C, Kedor-Hackmann ERM, Santoro MIRM. 2004. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev. Bras. Cienc. Farm. 40: 381-385. https://doi.org/10.1590/S1516-93322004000300014
  31. Palacio-Barrera AM, Areiza D, Zapata P, Atehortua L, Correa C, Penuela-Vasquez M. 2019. Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnol. Rep. 21: e00308.
  32. Melin A-M, Perromat A, Lorin C, Deleris G. 2002. γ Irradiation and cellular damage in Kocuria rosea: investigation by one- and two-dimensional infrared spectroscopy. Arch. Biochem. Biophys. 408: 211-219. https://doi.org/10.1016/S0003-9861(02)00583-0
  33. Goldberg S, Freundt E. 2016. Protective qualities of UV-resistant bacteria. Acta Spartae 2: 9-13.
  34. Mathews-Roth MM. 1987. Photoprotection by carotenoids. Fed. Proc. 46: 1890-1893.
  35. Trivedi N, Tandon S, Dubey A. 2017. Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. Afr. J. Biotechnol. 16: 1507-1512. https://doi.org/10.5897/AJB2017.15959
  36. Boo H-O, Hwang S-J, Bae C-S, Park S-H, Heo B-G, Gorinstein S. 2012. Extraction and characterization of some natural plant pigments. Ind. Crops Prod. 40: 129-135. https://doi.org/10.1016/j.indcrop.2012.02.042
  37. Barros RGC, Andrade JKS, Denadai M, Nunes ML, Narain N. 2017. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 102: 84-92. https://doi.org/10.1016/j.foodres.2017.09.082
  38. Sowndhararajan K, Kang SC. 2013. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci. 20: 319-325. https://doi.org/10.1016/j.sjbs.2012.12.005
  39. Magalhaes LM, Segundo MA, Reis S, Lima JLFC. 2008. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 613: 1-19. https://doi.org/10.1016/j.aca.2008.02.047
  40. Bana M, Heshmatipour Z. 2014. Isolation of pigment-producing bacteria from surface water and study of sun protection factor (SPF) of the purified pigments. Iran. J. Public Health. 43: 143-143.
  41. Choksi J, Vora J, Shrivastava N. 2020. Bioactive pigments from isolated bacteria and its antibacterial, antioxidant and sun protective application useful for cosmetic products. Indian J. Microbiol. 60: 379-382. https://doi.org/10.1007/s12088-020-00870-x
  42. Koli SH, Suryawanshi RK, Mohite BV, Patil SV. 2019. Prospective of Monascus pigments as an additive to commercial sunscreens. Nat. Prod. Commun. 14: 1-7.
  43. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, et al. 2015. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int. J. Cosmet. Sci. 37: 98-107. https://doi.org/10.1111/ics.12175