DOI QR코드

DOI QR Code

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung (Department of Radiology, Seoul National University Hospital) ;
  • Sunwoo, Leonard (Department of Radiology, Seoul National University Bundang Hospital)
  • Received : 2021.08.03
  • Published : 2022.03.30

Abstract

Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

Keywords

Acknowledgement

This research was supported by the SNUBH Research Fund (No. 09-2019-006).

References

  1. Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, Kim JH. Brain metastasis detection using machine learning: a systematic review and meta-analysis. Neuro Oncol 2021;23:214-225 https://doi.org/10.1093/neuonc/noaa232
  2. Zhou Z, Sanders JW, Johnson JM, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 2020;295:407-415 https://doi.org/10.1148/radiol.2020191479
  3. Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro Oncol 2019;21:1197-1209 https://doi.org/10.1093/neuonc/noz095
  4. Bae S, Choi YS, Ahn SS, et al. Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 2018;289:797-806 https://doi.org/10.1148/radiol.2018180200
  5. Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020;19:64-76 https://doi.org/10.2463/mrms.mp.2018-0156
  6. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989;2:359-366 https://doi.org/10.1016/0893-6080(89)90020-8
  7. Arpit D, Jastrzebski S, Ballas N, et al. A closer look at memorization in deep networks. In International Conference on Machine Learning: PMLR, 2017:233-242
  8. Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of deep learning techniques for autonomous driving. J Field Robot 2020;37:362-386 https://doi.org/10.1002/rob.21918
  9. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410 https://doi.org/10.1001/jama.2016.17216
  10. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-118 https://doi.org/10.1038/nature21056
  11. Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99 https://doi.org/10.13104/imri.2019.23.2.81
  12. Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe MJ, Pisano ED. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. AJR Am J Roentgenol 2014;203:909-916 https://doi.org/10.2214/AJR.12.10187
  13. Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2020;2:e138-e148 https://doi.org/10.1016/s2589-7500(20)30003-0
  14. Patel RR, Mehta MP. Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 2007;13:1675-1683 https://doi.org/10.1158/1078-0432.CCR-06-2489
  15. Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004;363:1665-1672 https://doi.org/10.1016/S0140-6736(04)16250-8
  16. Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector. In European conference on computer vision: Springer, 2016:21-37
  17. Grovik E, Yi D, Iv M, Tong E, Rubin D, Zaharchuk G. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J Magn Reson Imaging 2020;51:175-182 https://doi.org/10.1002/jmri.26766
  18. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning. In:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI Press, 2017: 4278-4284
  19. Bashyam VM, Erus G, Doshi J, et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 2020;143:2312-2324 https://doi.org/10.1093/brain/awaa160
  20. Rauschecker AM, Rudie JD, Xie L, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 2020;295:626-637 https://doi.org/10.1148/radiol.2020190283
  21. Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Invest Radiol 2019;54:7-15 https://doi.org/10.1097/RLI.0000000000000503
  22. Jeon Y, Lee K, Sunwoo L, et al. Deep learning for diagnosis of paranasal sinusitis using multi-view radiographs. Diagnostics (Basel) 2021;11
  23. Lee KJ, Ryoo I, Choi D, Sunwoo L, You SH, Jung HN. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS One 2020;15:e0241796 https://doi.org/10.1371/journal.pone.0241796
  24. Kim T, Heo J, Jang DK, et al. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2019;40:636-642 https://doi.org/10.1016/j.ebiom.2018.12.043
  25. Yu Y, Xie Y, Thamm T, et al. Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200772 https://doi.org/10.1001/jamanetworkopen.2020.0772
  26. Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 2019;38:1666-1676 https://doi.org/10.1109/tmi.2019.2901445
  27. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-2561 https://doi.org/10.1001/jama.2014.13806
  28. Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019;11:220 https://doi.org/10.3389/fnagi.2019.00220
  29. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 https://doi.org/10.1038/ncomms5006
  30. Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol 2015;12:862-866 https://doi.org/10.1016/j.jacr.2015.04.019
  31. Choi YS, Bae S, Chang JH, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 2021;23:304-313 https://doi.org/10.1093/neuonc/noaa177
  32. Kim JY, Park JE, Jo Y, et al. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 2019;21:404-414 https://doi.org/10.1093/neuonc/noy133
  33. Shim KY, Chung SW, Jeong JH, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Sci Rep 2021;11:9974 https://doi.org/10.1038/s41598-021-89218-z
  34. Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 2019;9:5746 https://doi.org/10.1038/s41598-019-42276-w
  35. Bae S, An C, Ahn SS, et al. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 2020;10:12110 https://doi.org/10.1038/s41598-020-68980-6
  36. Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 2019;20:1124-1137 https://doi.org/10.3348/kjr.2018.0070
  37. Chang PD, Malone HR, Bowden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890-898 https://doi.org/10.3174/ajnr.A5112
  38. Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 2018;37:1289-1296 https://doi.org/10.1109/tmi.2018.2833635
  39. Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:10353 https://doi.org/10.1038/s41598-017-10649-8
  40. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-1251 https://doi.org/10.1093/neuonc/noab106
  41. Singh G, Manjila S, Sakla N, et al. Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021;125:641-657 https://doi.org/10.1038/s41416-021-01387-w
  42. Han Y, Sunwoo L, Ye JC. k-space deep learning for accelerated MRI. IEEE Trans Med Imaging 2020;39:377-386 https://doi.org/10.1109/tmi.2019.2927101
  43. Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Med Image Anal 2021;71:102047 https://doi.org/10.1016/j.media.2021.102047
  44. Kim B, Kim DH, Park SH, Kim J, Lee JG, Ye JC. CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal 2021;71:102036 https://doi.org/10.1016/j.media.2021.102036
  45. Dashtbani Moghari M, Zhou L, Yu B, et al. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility. Phys Med Biol 2021;66
  46. Lee D, Kim J, Moon W-J, Ye JC. CollaGAN: collaborative GAN for missing image data imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:2487-2496
  47. Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-based high-definition dynamic contrast enhanced MRI for concurrent estimation of perfusion and microvascular permeability. Med Image Anal 2020;59:101566 https://doi.org/10.1016/j.media.2019.101566
  48. Choi KS, You SH, Han Y, Ye JC, Jeong B, Choi SH. Improving the reliability of pharmacokinetic parameters at dynamic contrast-enhanced MRI in astrocytomas: a deep learning approach. Radiology 2020;297:178-188 https://doi.org/10.1148/radiol.2020192763
  49. Kim KH, Choi SH, Park SH. Improving arterial spin labeling by using deep learning. Radiology 2018;287:658-666 https://doi.org/10.1148/radiol.2017171154
  50. Knoll F, Zbontar J, Sriram A, et al. fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol Artif Intell 2020;2:e190007 https://doi.org/10.1148/ryai.2020190007
  51. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 2019;38:1788-1800 https://doi.org/10.1109/tmi.2019.2897538
  52. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033-2044 https://doi.org/10.1016/j.neuroimage.2010.09.025
  53. Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019;46:550-562 https://doi.org/10.1002/mp.13284
  54. Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 2021;298:180-188 https://doi.org/10.1148/radiol.2020202317
  55. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 2016;37:1192-1198 https://doi.org/10.3174/ajnr.A4615
  56. Jin CB, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors 2019;19:2361 https://doi.org/10.3390/s19102361
  57. Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 2019;46:3565-3581 https://doi.org/10.1002/mp.13617
  58. Titano JJ, Badgeley M, Schefflein J, et al. Automated dee-pneural-network surveillance of cranial images for acute neurologic events. Nat Med 2018;24:1337-1341 https://doi.org/10.1038/s41591-018-0147-y
  59. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388-2396 https://doi.org/10.1016/S0140-6736(18)31645-3
  60. Kuo W, Hne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A 2019;116:22737-22745 https://doi.org/10.1073/pnas.1908021116
  61. Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173-182 https://doi.org/10.1038/s41551-018-0324-9
  62. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Phys 2018;5:24 https://doi.org/10.1186/s40658-018-0225-8
  63. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 2018;286:676-684 https://doi.org/10.1148/radiol.2017170700
  64. Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 2019;291:677-686 https://doi.org/10.1148/radiol.2019182012
  65. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972 https://doi.org/10.1200/JCO.2009.26.3541
  66. Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 2019;20:728-740 https://doi.org/10.1016/S1470-2045(19)30098-1
  67. Cho J, Kim YJ, Sunwoo L, et al. Deep learning-based computer-aided detection system for automated treatment response assessment of brain metastases on 3D MRI. Front Oncol 2021;11:739639 https://doi.org/10.3389/fonc.2021.739639
  68. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809 https://doi.org/10.1148/radiol.2017171920
  69. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410 https://doi.org/10.3348/kjr.2019.0025
  70. Kim HY, Cho SJ, Sunwoo L, et al. Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis. Neurooncol Adv 2021;3:vdab080
  71. Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer SJ. Improving the quality of machine learning in health applications and clinical research. Nat Mach Intell 2020;2:554-556 https://doi.org/10.1038/s42256-020-00239-1
  72. Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 2020;26:807-808 https://doi.org/10.1038/s41591-020-0941-1
  73. Harvey H, Oakden-Rayner L. Guidance for interventional trials involving artificial intelligence. Radiol Artif Intell 2020;2:e200228 https://doi.org/10.1148/ryai.2020200228