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INTRODUCTION

Leishmaniasis is a serious parasitic disease caused by Leish-

mania species transmitted by sand fly bites [1]. The clinical 
manifestations can be classified as cutaneous (CL), mucocuta-
neous (MCL), and visceral leishmaniasis (VL). The clinical 
form depends on the complex interactions between the viru-
lence characteristics of the infecting Leishmania spp. and the 
immune responses of the host [2]. This disease is a major pub-
lic health concern. The CL form tends to heal spontaneously 
and often causes disfiguring scars on the skin [3]. Although a 
history of CL is not reported in all new MCL patients, MCL re-
sults from the spread of parasites to the oral, nasal, pharynge-
al, and laryngeal mucosa following or simultaneously with 
CL. Spontaneous recovery from MCL is rare and can progress 
to severe deformities such as nasal septal destruction, airway 
obstruction, and eventually death [4].  The VL is the most se-

vere form and potentially fatal if left untreated [5]. The disease 
has been reported as endemic in 98 countries and territories in 
2020. It primarily affects poor people in Africa, Asia, and Latin 
America [6]. Despite being the second most common parasitic 
disease after malaria and its devastating nature, it has re-
mained one of the most neglected diseases worldwide until re-
cent years, perhaps due to its rarity in developed countries 
[7,8].

Currently, licensed vaccines are unavailable for the treat-
ment of human leishmaniasis [9]. The treatment of the disease 
and prevention of its spread in the community is mainly de-
pendent on chemotherapy [10-12]. Of the more than 25 com-
pounds, pentavalent antimonials (Sb5+) are the first-line che-
motherapy drugs. Amphotericin B, pentamidine isethionate, 
miltefosine, and paromomycin are the second-line chemo-
therapeutics [1,13]. However, the existing drugs are not ideal 
because of their high toxicity and resistance [2,12]. Although 
the CL form can be treated with thermotherapy, it is not feasi-
ble for the other forms of the disease [14].

According to the World Health Organization (WHO), vacci-
nation is most likely the best method to control the disease 
and avoid the unwanted effects of chemotherapies [14]. The 
development of a safe, effective, and affordable vaccine for all 
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site between the host and vector. Immunological mechanisms in the pathogenesis of leishmaniasis are complex. IL-
12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to es-
tablish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/
killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric pep-
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due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies 
are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.
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forms of the disease is one of the most promising approaches 
and the main priority of global public health [15]. Hence, this 
article aims to focus on the current status and promising re-
sults of the available vaccines evaluated in different modalities.

THE ROLE OF IMMUNOLOGICAL MECHANISMS 
IN LEISHMANIASIS

Unlike most parasitic infections, protective immunity occurs 
against reinfection in patients who recover from leishmaniasis 
or following leishmanization (LZ) [16,17]. This result reveals 
that immunological mechanisms play a major role in shaping 
the disease, and this globally important disease can potentially 
be prevented using vaccines [8,18,19]. It also provides a road-
map for the development of successful vaccines that can gener-
ate protective immunity against infection [20].

The immunological protective mechanism is complicated in 
leishmaniasis [21]. Cell-mediated immunity plays a crucial 
role in host immunity. While the primary immune response 
to infection is initiated through the innate branch, which de-
velops protective innate and adaptive immunity, infection 
control is mainly mediated by IL-12-driven Th1-type immune 
response. T lymphocytes shape the host immune response to 
provide direct protective or non-protective immunity [22]. The 
production of IFN-γ by CD4+ T cells activates macrophages to 
kill parasites under nitric oxide (NO)-mediated conditions 
[23]. Disease progression is largely driven by the production of 
non-protective IL-4-driven Th2-associated cytokines IL-4, IL-
10, IL-13, and TGF-β [24-26]. Some species, such as L. mexi-
cana and L. amazonensis in the New World, unlike L. major, can 
survive in conditions of limited Th1 immune responses in the 
host [27]. Unlike Th1, the Th2-type immune response is un-
able to neutralize intracellular parasites, causing the parasite to 
spread into VL or, for New World species, disseminated cuta-
neous leishmaniasis (DCL) [28].

VACCINATION STRATEGIES IN LEISHMANIASIS

The availability of vaccines against one or more forms of 
leishmaniasis can reduce mortality and morbidity associated 
with this disease. However, Leishmania parasites have a com-
plex life cycle, which consists of stages in animal/human and 
sand flies and is the most important barrier for vaccine devel-
opment. Moreover, this neglected tropical disease substantially 
affects low- and lower-middle-income countries, which dis-

courages commercial developers from invest in the studies of 
vaccine [8]. In addition, differences in the virulence dynamics 
of Leishmania species and the immune responses induced by 
them, as well as the suitability of adjuvants negatively affect 
vaccine development and standardization efforts [7]. A vaccine 
against CL caused by L. major may not necessarily have effec-
tivity against the New World forms of diseases, including MCL 
and DCL [29]. Nonetheless, various vaccination strategies, 
such as recombinant antigens, DNA vaccines, salivary gland 
proteins, killed parasites, and live attenuated parasites exist to 
treat leishmaniasis [30-34]. 

An ideal antileishmanial vaccine may solve the current 
problems and must be safe, stable, reproducible, less risky, eas-
ily administered, stored, and delivered, not reversible to an in-
fectious state, and able to induce long-term immunological 
memory [8,35]. However, no vaccine meets these ideal specifi-
cations [36]. Compared with other approaches, the strategy of 
using live vaccines is more attractive because of the induction 
of a response similar to the immunological response in the 
natural course of infection (Fig. 1). In the live vaccine strategy, 
the entire spectrum of antigens is presented to the host im-
mune system without an adjuvant [21].

Potential interventions to induce an immune response 
against Leishmania can be analyzed using different strategies, 
such as LZ and saliva vaccines, as well as first-, second-, and 
third-generation vaccines [28]. Different novel approaches 
have been investigated for this purpose, such as delivery sys-
tems and chimeric peptides. These approaches can be designed 
as single or cocktail antigens [36-38]. 

Leishmanization (LZ) vaccine
LZ is an ancient practice of vaccination [28]. LZ is an intra-

dermal low-dose inoculation of live and virulent L. major lead-
ing to a single lesion [39]. LZ provided greater than 90% pro-
tection against reinfection [16]. LZ has been used in several 
countries in the Middle East and the former Soviet Union. Ex-
cept for Uzbekistan, which is an endemic country, it is no lon-
ger practiced due to safety concerns such as HIV spread, use of 
immunosuppressive drugs, ethical reasons, uncontrollable 
persistent skin lesions, and persistence of parasites [16,21]. The 
overall strategy should be to develop a safer vaccine by provid-
ing protective immunity without causing skin lesions, includ-
ing in immunosuppressed individuals. However, vaccination 
with live parasites showed a stronger Th1 type of immune re-
sponse than vaccination with killed parasites, which exhibited 
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limited protection. However, the reason for these differences is 
not well known [17].

Another study from Iran showed that leishmanization was 
found to reduce the incidence of the disease between 1/6 and 
1/8 of its original level in a hyper-endemic region of Iran and 
thus was recommended for people at high risk of contracting 
the disease [39].

Saliva vaccine
Sand fly vectors (Phlebotomus and Lutzomyia spp.) are of par-

ticular interest and induce immune responses as adjuvants 
through certain immunogenic proteins such as LJM19 and 
LJL143 from L. longipalpis and PdSP15 from P. duboscqui 

[16,40,41]. Normally, sand fly saliva is known to enhance the 
infection caused by Leishmania spp. [41]. However, pre-expo-
sure to saliva protected mice against parasitic infections. In a 
study on mice, Carregaro et al. [18] reported that the injection 
of sand fly salivary gland extract resulted in increase in IFN-γ 
and IL12 production in the site of inflammation and pre-ex-
posure to saliva protects mice against parasitic infections. They 
concluded that the generation of new saliva vaccine strategies 
may help prevent Leishmania establishment in the host.

Immunization with a vehicle expressing the vector salivary 
protein expressing the PpSP15 protein, such as Lactococcus lac-

tis and Leishmania tarentolae, has been shown to protect against 

CL or VL [42,43].

First generation (whole-killed or fractioned parasite) 
vaccines

First-generation vaccines are composed of whole-killed par-
asites or partially purified fraction(s) or excreted from the par-
asite. These have been replaced with LZ [28]. The parasites 
were killed using different methods, such as long-term in vitro 
culture, temperature, pressure, γ-radiation, and chemicals [44-
49]. The killed parasite vaccines present a huge repertoire of 
parasite antigens and can promote significant protection 
against infection by mimicking natural infections. However, 
these studies show that they induce a weaker Th1 type im-
mune response than live parasites, and the results are associat-
ed with an inconsistent effect. For these reasons, adjuvants 
have been used in many studies (e.g., Bacillus Calmette–
Guérin (BCG)), and the parasites have been administered 
through alternative routes such as the mucosal route [19,39, 
49].

Whole-killed vaccines
The Leishvaccine, which comprised whole-killed promasti-

gotes of L. amazonensis strain (IFLA/BR/1967/PH8) and BCG, 
plays an important role against canine leishmaniasis. The vac-
cine significantly increases cytokine expression, innate immu-

A B

Fig. 1. Schematic depiction briefing the immunological response against Leishmania infection (Modified from Pacheco-Fernandez et al. 
[36], with permission). (A) Immunological response in live/attenuated Leishmania vaccination. 1) Injection of live/attenuated parasites, 2) 
Transforming promastigotes into amastigotes, 3) Internalization of the amastigotes by dendritic cells, 4) Presentation to T cells in the 
draining lymph nodes by dendritic cells, 5) Differentiation of T cells into effector and memory T cells, 6) Prevention of transmission to the 
sand fly because of long-term protective immunity. (B) Immunological response in Leishmania vaccination using DNA, recombinant anti-
gen (Ag), or subunit Ag. 1) Injection of DNA, recombinant Ag, or subunit Ag, 2) Encountering of antigens and dendritic cells, 3) Internal-
ization of the antigens by dendritic cells, 4) Presentation to T cells in the draining lymph nodes by dendritic cells, 5) Differentiation T cells 
into the effector and memory T cells, 6) Prevention of transmission to the sand fly because of long-term protective immunity. CD4+ TEff: 
effector T helper cell, CD4+ TMem: memory T helper cell, CD4+ TCent Mem: central memory T helper cell, Tissue TRes Mem: tissue residence 
memory T cell, effector T helper cell, and CD8+ TEff: effector cytotoxic T cell.

CD4+
TEff

CD4+
TEff

CD4+
TMem

CD4+
TMem

CD4+
TCent Mem

CD4+
TCent Mem

CD4+
TRes Mem

CD4+
TRes Mem

CD4+
TEff Mem

CD4+
TEff Mem



382    Korean J Parasitol Vol. 60, No. 6: 379-391, December 2022

nity, and adaptive immune response [50]. The leishmania vac-
cine was successful in clinical trials of human Phases I and II 
for its safety and immunogenicity; however, it failed in Phase 
III. The application of autoclaved-killed L. mexicana adjuvant-
ed with BCG resulted in low levels of leishmanin skin test 
(LST) conversion, which is a marker for cellular immune re-
sponse [51]. Nevertheless, the incidence of leishmaniasis has 
significantly decreased in LST-converted participants [49]. 
Similarly, autoclaved-killed L. major (ALM), the old-world spe-
cies associated with BCG, caused LST conversion in approxi-
mately one-third of healthy participants. However, there was a 
significant reduction in the incidence in individuals who LST-
converted [52].

In addition to their preventive aims, the use of this type of 
vaccine for immunotherapy offers a safe option for severe 
forms of CL that do not respond to conventional chemothera-
py. In a multicenter randomized controlled clinical trial (RCT) 

that evaluated the effects of immunotherapy with a vaccine 
comprising heat-killed L. mexicana+L. amazonensis adjuvanted 
with BCG over 10 years, 95.7% of patients with CL were treat-
ed with mild adverse events and low cost [49]. The immuno-
therapeutic approach has been successful in cases of mucocu-
taneous and diffuse forms of CL [52]. Furthermore, a combi-
nation of alum-precipitated ALM (alum/ALM)+BCG and so-
dium stibogluconate (Stb) was shown to be more effective 
than Stb alone (87% vs. 53%) [53].

Fractionated Leishmania antigens
Four fractionated vaccines, Leishmune (Zoetis Industria de 

Produtos Veterinarios LTDA, São Paulo, Brazil), Leish-Tec 
(Hertape Calier Saúde Animal S/A, Juatuba, Brazil), CaniLeish 
(Virbac, Carros, France), and LetiFend (3P Biopharmaceuticals 
SL, Navarra, Spain), have been licensed and have achieved im-
pressive success in preventing canine leishmaniasis. Of these, 

Table 1. Several example for given properties of different types of Leishmania vaccines [21,51,84-86]				  

Type of vaccines Essential component Clinical form Benefits Concerns

Leishmanization Live and virulent L. major or L. tropica CL Single dose
Long-term and strong immunity

Not safe

Killed vaccines Killed Leishmania species CL Safer than live vaccines Less powerful than live 
vaccines

Require multiple doses
Live genetically 

modified vaccines 
(avirulent)

BT1-/-
Ldp27-/-
HSP70-II nul
KHARON1 
Cen-/-

VL
VL; �cross-protection 

for CL and MCL
CL, VL
VL
CL, VL

Safer than general live vaccines
Stimulate immune system as in 

natural infection 
Don’t require multiple doses

Risk of reversion to  
virulent state

Need cold chain for 
transportation

Recombinant and 
subunit  vaccines

a. �Recombinant LEISH-F1, LIESH-F2 
and LEISH-F3

b. �LdA2, Ldp27, eIF-2, NH, CPA, CPB, 
SMT, H1, HSP, LACK

c. �Sand fly saliva antigens: LJM19, 
LJL143, PdSP15

CL, VL
CL, MCL, VL
CL, MCL, VL

No risk
Induce strong immune  

response

Need cold chain for 
transportation

Need adjuvant

DNA vaccines a. �A2, LACK, TSA + LmSTI1, gp63, 
KMP-11, CPB, NH36, LeIF, 
gp63+HSP70, MIDGE-Th1 vectors 
encoding conserved T-cell epitopes 
from KMP11, TSA, CPA and CPB

b. �Semian Adenovirus expressing NH 
and SMT

CL, VL
PKDL

Safe
No need adjuvant
Elicit antigen-specific immune 

responses

Low potency in humans

Live nonpathogenic 
vaccines  
(avirulent) 

L. tarentolae VL Life-long immunity
No reversion to virulent state
Cross-protetion between spe-

cies

Unknown memory  
formation and duration 

Need cold chain for 
transportation

CL, Cutaneous leishmaniasis; VL, visceral leishmaniasis; MCL, Cutaneous leishmaniasis; PKDL, post-kala-azar dermal leishmaniasis; BCG, Bacillus 
Calmette Guerin; BT1, Biopterin transporter 1; Ldp27, L. donovani amastigote specific protein p27; Cen, centrin; HSP, Heat-schok protein; A2, 
Amastigote specific protein 2; LACK, Leishmania homolog of receptors for activated c-kinase; CPA or B, Cysteine peptidase A or B; NH, Nucleoside 
hydrolase; SMT, Sterol 24-c-methyltransferase; H1, Histone-1; LJM19, A L. longipalpis salivary protein; LJL143, A L. longipalpis salivary protein; 
PdSP15, P. duboscqi salivary protein-15; KMH-11, Kinetoplastid membrane protein 11; TSA, Thiol-specific antioxidant; gp63, Gikoprotein63; LmS-
TI1, L. major stress-inducible protein-1; LeIF, L. braziliensis elongation and initiation factor; MIDGE, minimalistic immunogenically defined gene expres-
sion.
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Leishmune and Leish-Tec in Brazil, and CaniLeish and Leti-
Fend in Europe have been commercialized [54].

Leishmune is composed of the fucose-mannose ligand 
(FML) of L. donovani and saponin adjuvant [55]. In phase III 
studies conducted in dogs, 92% protection against disease was 
observed. Because no clinical signs or Leishmania DNA were 
detected in these animals, Leishmune was evaluated as a trans-
mission-blocking vaccine. However, the lack of sample ran-
domization or blinded evaluation of trial individuals did not 
allow for full validation of the results. In 2014, the production 
and marketing license of Leishmune was withdrawn [54]. The 
CaniLeish vaccine is composed of purified excreted–secreted 
proteins of L. infantum (LiESP) and adjuvanted with saponin 
(named QA-21) [56]. The vaccine elicited predominantly Th1-
type cellular immune responses, and the infection protection 
rate was 99.4% in a field study [57].

Leish-Tec and LetiFend are recombinant vaccines. Leish-Tec 
was formulated with recombinant protein A2 from L. donovani 
amastigotes and saponin as a vaccine adjuvant. In studies that 
assessed Leish-Tec, it was observed that it was effective not 
only as preventive, but also in immunotherapeutic approaches 
[54]. LetiFend contains a chimeric protein (protein Q) formed 
by 5 antigenic fragments from 4 different L. infantum proteins 
(ribosomal proteins LiP2a, LiP2b, and LiP0, and histone H2A), 
to which no adjuvant has been added. It was shown it would 
be the potential of protein Q in the immunization against L. 
infantum in preliminary studies in mice [58].

Fractionated Leishmania vaccines seem to be efficiently used 
in areas that are crucial to the control of Leishmania infection 
[56].

Second generation (subunit or genetically modified 
parasite) vaccines

Although first-generation vaccines are still being evaluated, 
several studies have focused on second-generation vaccines. 
Second-generation vaccines include different recombinant 
proteins, which are produced through genetically engineered 
cells such as viruses and bacteria, purified native protein frac-
tions of parasite antigens, synthetic peptides, and even geneti-
cally modified parasites [28]. Second-generation vaccines are 
more feasible for mass vaccination, and their recombinant na-
ture facilitates accessibility to large-scale and cost-effective pro-
duction [54].

Subunit vaccines
The several subunits or recombinant vaccine candidates 

such as LeIF, gp63, p36/LACK, A-2, PSA-2/gp46/M-2, FML, 
LCR1, ORFF, KMP11, LmSTI1, TSA, HASPB1, protein Q, cyste-
ine protease B (CPB), and A (CPA) have been extensively stud-
ied [40,55,59-67]. Many subunit vaccine candidates stimulate 
an effective protective immune response in the prevention of 
Leishmania infection. One of the advantages of subunit vac-
cines is that they pose no risk of infection, which ensures their 
suitability for immunocompromised individuals [59].

Application of a surface-expressed glycoprotein (gp63), an-
other subunit protein, in a cationic liposome increased the 
number of IFN-γ-producing effector T cells. Furthermore, vac-
cination based on gp63 DNA elicited immune responses and 
conferred protection [60]. In a couple of experiments assessing 
protective immunological effects, viruses expressing the LACK 
(Leishmania homologue for receptors of activated C kinase) 

Table 2. Main mechanisms of action and status of Leishmania vaccines at the clinical trial stage [51,69,82,83,86,87]

Name of vaccine Essential component/antigen Adjuvant Mechanism of action Clinical phase

Leishvaccine Whole-killed promastigotes of L. amazonensis BCG CD4+, CD8+, B cell activation III
ALMϼ Autoclave-killed L. major BCG T cell activation II
Leishmune FML Saponin T cell activation III
CaniLeish LiESP Saponin Induction of Th1 cell III
GALMα Gentamicin-attenuated L. major T and B cell activation II
LEISH-F1 TSA+LmSTI1+LeIF MPL-SE T cell activation I
LEISH-F2 LEISH-F2, designed from LEISH-F1 MPL-SE T cell activation II
LEISH-F3 NH+SMT GLA-SE T cell activation I
Leish-Tec L. donovani A2 protein Saponin T cell activation III
SMTγ+ NHµ NH+SMT GLA-SE T cell activation I
ChAd63-KH KMP-11+HASPB Broad CD8+ T cell activation II

ALM, Autoclaved-killed L. major; GALM, Gentamycin-attenuated L. major; NH, Nucleoside hydrolase; SMT, Sterol 24-c-methyltransferase; FML, fu-
cose-mannose ligand; LiESP, L. infantum excreted–secreted protein; KMH-11, Kinetoplastid membrane protein 11; HASB, Hydrophilic acylated sur-
face protein B; BCG, Bacillus Calmette Guerin; MPL-SE, Monophosphoryl lipid A; GLA-SE, Glucopyranosyl lipid A-stable oil-in-water nano emulsion.
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antigen, with or without adjuvant, showed good protective ef-
fects against Leishmania infection [61,62]. Similarly, the virus 
expressing the promastigote protein surface of G46/M-2/PSA-
2 protected against L. amazonensis [63].

Notably, recombinant antigen vaccines such as LEISH-F1, 
LIESH-F2, and LEISH-F3 have reached phase II clinical trials, 
demonstrating their potential as vaccine candidates against 
leishmaniasis [68-70]. LEISH-F1 is an artificial protein encod-
ed by 3 genes: L. major homologue of eukaryotic thiol-specific 
antioxidant (TSA), L. major stress-inducible protein-1 (LmS-
TI1), and L. braziliensis elongation and initiation factor (LeIF). 
LEISH-F1 protein applications were evaluated following emul-
sification of monophosphoryl lipid A in a structure-stimulat-
ing toll-like receptor (MPL-SE). LEISH-F1+MPL-SE (IDRI, Se-
attle, Washington, USA) efficiently treated patients with CL or 
ML and induced protective immunity in healthy volunteers 
[68-70]. This vaccine is also safe and tolerated [71]. Among the 
other adjuvanted artificial proteins, LEISH-F2+MPL-SE and 
LEISH-F3+GL-SE (glucopyranosyl lipid A-stable oil-in-water 
nanoemulsion) showed promising results against infection 
[68-70]. A NS recombinant vaccine, consisting of enzyme nu-
cleoside hydrolase (NH) and sterol 24-c-methyltransferase 
(SMT) and adjuvanted with “glucopyranosyl lipid A-stable oil-
in-water nanoemulsion” (GLA-SE), is also in clinical trial 
phase [51].

Genetically modified parasite vaccines
In Leishmania vaccine research, live attenuated vaccines 

made by genetic modifications are another research topic [16]. 
In this strategy, the parasite genes responsible for its survival 
and/or virulence are modified or deleted. Unlike live virulent 
parasites, they do not pose any danger associated with infec-
tion. However, they ensure that the induction of immune re-
sponses is consistent with protection, since they closely mimic 
natural infection [72].

Various live attenuated vaccine strains of L. major, L. mexi-

cana, L. amazonensis, and L. donovani have been produced by 
deleting the targeted genes. They were observed to provide sig-
nificant protection against CL and VL in susceptible mice. 
Among them, Biopterin transporter 1 (BT1)-deleted L. don-

ovani parasites and A2–rel gene cluster in L. donovani as well 
as SIR2, Hsp70-II, and KH1 L. infantum null mutants, protect-
ed the mice against virulent strains [73-76]. The p27 gene, en-
coding an amastigote-specific cytochrome C oxidase compo-
nent, knockout (gene Ldp27-/-) L. donovani reduced parasitic 

loads and provided long-lasting protection against the devel-
opment of CL and VL associated with virulent strains [77,78].

Leishmania centrin gene-1 is necessary for parasite growth 
and differentiation. The generation of a potential mutant vac-
cine candidate appears to be an interesting target. Volpedo et 
al. [28] reported that immunization with LdCen-/- led to a sig-
nificant influx of MHC-II-expressing macrophages, resulting in 
higher levels of IFN-γ+-secreting CD4+ Th1 cells and lower 
levels of IL-10- and IL-4-sectreting CD4+ Th2 cells. This re-
sponse ensures protection against the virulent parasites.

In general, the most promising strategic alternative against 
VL can be claimed to be the use of live, non-pathogenic/genet-
ically engineered strains of these species [26].

Third generation (naked DNA) vaccines
Third-generation vaccines utilize the DNA [51]. In this rela-

tively new approach, naked plasmid DNA or DNA encapsulat-
ed in a viral vector is injected intradermally or intramuscularly 
[28,79]. DNA vaccines are safe because they do not contain any 
pathogenic organisms that may revert virulence [79]. They also 
efficiently induce interferon-gamma production and dendritic 
cell activation, which protects against Leishmania infection [80].

DNA vaccines can consist of genes encoding single antigens, 
such as gp63, LACK, or PSA-2. They can also include multiple 
genes encoding various antigens such as TSA, KMP11, A-2, 
NH36, LmSTI1, cysteine proteases, and histones [51]. To in-
crease the immunogenicity of DNA vaccines, these vaccines 
were primed by boosting the associated protein expressed on a 
recombinant virus-like modified vaccinia virus Ankara [81]. 
This strategy selectively elicits a wide range of CD8+ T cells 
specific for Leishmania antigens [28,79].

Collectively, DNA vaccines are stable, do not require adju-
vants, produce antigens over long periods, can easily be pro-
duced in large quantities, and are effective. Nonetheless, they 
bear some safety concerns, such as the integration of DNA into 
the mammalian genome, which can result in the induction of 
autoimmune diseases or cancer [28].

DNA vaccines, known as third-generation vaccines, are of 
particular interest because they can effectively induce both 
CD8+ and CD4+ T cells, produce long-lived antigens and 
properly folded polypeptides, etc. [82]. Recently, a phase II 
study is being conducted to evaluate the therapeutic effects of 
ChAd63-KH, which consists of 2 genes encoding the L. don-
ovani KMP-11 and HASPB antigens, in patients with persistent 
post-kala-azar dermal leishmaniasis (PKDL) [83]. 
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New strategy vaccines
Advances in the field of science, in addition to the above-

mentioned, have also led to the investigation of new strategies 
in vaccine development, including certain bioengineering ap-
proaches, such as delivery systems and chimeric vaccines, and 
the use of nonpathogenic Leishmania spp. [19].

Vaccine antigen delivery systems
Drug delivery systems have been extensively studied for the 

treatment of cancer and infectious diseases [1,88,89]. Nano- 
particles (NP) are considered ideal vaccine delivery systems. 
Owing to their structures, vaccine delivery systems present sev-
eral advantages, such as controlled antigen release, protection 
of the vaccine antigens from degradation, and site-specific de-
livery. They can also have adjuvant effect [89]. All these charac-
teristics of NP carriers lead to enhanced bioavailability of anti-
gens, which results in the activation of the immune response. 
In a study using cationic solid lipid nanoparticles (cSLN) for 
carrier and delivery, the injection of a fusion gene, pCDNA-A2-
CPA-CPB−CTE, enhanced protective cell mediated immunity 
[90].

Another study demonstrated that vaccination with multi-
functionalized PLGA NPs encapsulating sLiAg and/or MPLA 
provided strong protection against infection with L. infantum 
[89]. In both studies, the increased production of IFNγ fol-
lowed by suppression of IL-4 and IL-10 production and very 
few parasitic loads were considered protective markers. In con-
clusion, nanoparticle carriers of Leishmania antigen vaccine 
may be a highly effective strategy against leishmaniasis.

Chimeric vaccines 
Lage et al. [91] designed an in silico synthetic recombinant 

vaccine, named ChimeraT. It contained specific T-cell epitopes 
from Leishmania prohibitin, eukaryotic initiation factor 5a, 
and hypothetical LiHyp1 and LiHyp2 proteins. After injecting 
ChimeraT with saponin as an adjuvant, a Th1-type immune 
response was induced and BALB/c mice were protected against 
L. infantum infection [91]. In another study, the F1F3 chimera 
protein (C-terminal domain of nucleoside hydrolase NH36) 
showed a strong reduction in ear lesion size induced by L. bra-

ziliensis. It also promoted the highest CD4+ and CD8+ cyto-
kine-secreting T cell responses, with predominant frequencies 
of multifunctional CD4+ and CD8+IL-2+TNF-α+IFN-γ+ T 
cells [92]. Thus, chimeric proteins could be considered poten-
tial vaccine candidates to protect against human diseases.

Nonpathogen Leishmania spp. in vaccination
L. tarentolae, isolated from a reptile animal, is a nonpatho-

genic Leishmania specie in humans [93,94]. In contrast, this 
parasite activates the dendritic cell maturation process, which 
results in the production of interferon gamma and induction 
of a Th1-type immune response. Furthermore, it mimics the 
natural development of immunity better than other strategies 
as an important advantage [89]. Breton et al. [95] also ob-
served that intraperitoneally injected L. tarentolae elicited pro-
tective immunity against L. donovani in BALB/C mice. In this 
regard, they proposed that L. tarentolae is a promising live vac-
cine candidate against Leishmania infections, without causing 
any infection in humans.

Breton et al. [95] proposed the idea that it can be improved 
by generating recombinant L. tarentolae expressing selected 
Leishmania immunodominant epitopes or by combining the L. 

tarentolae recombinant parasite with a DNA vaccine as part of 
a prime-boost strategy to elicit more effective and long-lasting 
protection. In fact, in a parallel study with a cSLN carrier of the 
pcDNA-A2-CPA-CPB-CTE fusion gene by Taslime et al. [90], it 
was reported that recombinant L. tarentolae-A2-CPA-CPB-CTE 
vaccination was protective against L. infantum infection in 
BALB/c mice.

Viral-like particle vaccines
One of the latest approaches to developing a safe and cost-

effective large-scale vaccine is the use of virus-like particles 
(VLPs). VLPs are molecules that are morphologically identical 
to the native virus but cannot replicate because they do not 
contain viral genetic material (VLPs) [96].  The VLP-based an-
tigen formulation has the potential to generate not only cellu-
lar but also humoral immunity that is very similar to that elic-
ited by a natural viral infection VLPs can be produced in differ-
ent expression systems such as bacterial, yeast, plant, insect or 
mammalian cells. Panasiuk et al. [86] revealed that VLPs de-
rived from L. tarentolae can induce the production of potent 
neutralizing antibodies. Maura et al. [97] tested a polyvalent 
α-Gal, carbohydrates essential for the virulence and viability of 
many parasites, conjugated to an immunogenic Qβ virus-like 
particle in a C57BL/6 α-galactosyltransferase knockout mouse 
model. This vaccine protected knockout mice against L. infan-

tum and L. amazonensis, the aetiological agents of visceral and 
cutaneous leishmaniasis, respectively.
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mRNA vaccines
An effective vaccine both should boost the natural innate 

and adaptive immune response and induce a memory im-
mune response that provides long-term protection against in-
fection. Recent research reveals that mRNA vaccines signifi-
cantly enhance these properties [98]. The mRNA platform aslo 
allows simultaneous expression of multiple proteins, eliciting 
immunity against different epitopes from different targets [99]. 
In a mice model, Duthie et al. [100] observed a significant re-
duction in the parasite burden in the liver by administering 
F2-RNA as a prime vaccination and then boosting with the re-
combinant LEISH-F2 protein. RNA vaccine technology has the 
potential to offer an effective and practical solution to vaccine 
development. Development of RNA vaccine requires only 
knowledge of the target gene sequence, eliminating the need 
for pathogen culture or scale-up recombinant protein produc-
tion [101].

CONCLUDING REMARK

A safe and efficacious vaccine is urgently required to provide 
long-lasting protective immunity for the control of parasitic 
infections. Although cell-mediated immunity is known to play 
a crucial role in host protection, the immunological protective 
mechanism of leishmaniasis is complicated. While there is 
currently no licensed vaccine for human leishmaniasis, exten-
sive efforts are underway to develop a variety of vaccine mo-
dalities with promising results worldwide. Some of these mo-
dalities are in clinical phase and successful results are obtained 
in terms of safety and immunogenicity. Meanwhile, it is con-
sidered that animal vaccines will play an important role in 
preventing the transmission of Leishmaniasis to humans. Fur-
thermore, several vaccine candidates are being evaluated at dif-
ferent phases of clinical trials, including those in the first, sec-
ond, and even third generation.
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