DOI QR코드

DOI QR Code

성인 여성에서 납의 체내 노출 수준과 심혈관질환과의 융복합 연구 : 제7기 국민건강영양조사 자료 이용 (2017)

A convergence study on the exposure levels of lead and cardiovascular diseases in adults women using the 7th Korea National Health and Nutrition Examination Survey (2017)

  • 최연정 (삼육대학교 식품영양학과) ;
  • 황효정 (삼육대학교 식품영양학과)
  • 투고 : 2022.02.06
  • 심사 : 2022.03.20
  • 발행 : 2022.03.28

초록

본 연구는 한국 성인 여성의 체내 납 (Pb) 노출 수준과 심혈관질환 (CVD) 사이의 관계를 분석하기 위해 수행되었다. 2017년 국민건강영양조사 (KNHANES)에 참여한 만 19세 이상 성인 1,821명을 대상으로 혈중 납과 허혈성 심장 질환 (IHD), 뇌졸중 및 고혈압의 자가 보고한 의사 진단에 대한 단면 자료를 이용하였다. CVD 및 혈중 납 농도는 로지스틱 회귀분석을 통해 분석하였고, pearson 상관계수를 이용하여 요인 간의 상관관계를 확인하였다. 혈중 납 수치 증가는 여성에서만 허혈성 심장 질환 (OR 5.68, 95% CI 1.01-17.51) 및 고혈압 (OR 3.37, 95% CI 2.24-5.07) 위험 증가와 연관이 있었다. 또한, 혈중 납과 영양소 섭취 사이에는 상관관계가 있었다. 이는 혈중 납 수치가 CVD 발병의 주요 예측 인자로 사용될 수 있으며 여성이 납 노출과 관련된 IHD 및 고혈압에 더 취약하다는 것을 시사한다.

This study was conducted to analyze the relationship between the levels of lead (Pb) exposure and cardiovascular disease (CVD) in Korean adult women. We used cross-sectional data on blood lead and self-reported diagnoses of ischemic heart disease (IHD), stroke and hypertension in a subsample of 1.821 adults 19 years and older who participated in the 2017 Korea National Health and Nutrition Examination Survey (KNHANES). CVD and blood Pb concentrations were analyzed through logistic regression analysis, and correlations between factors were confirmed using the pearson correlation coefficient. An increase of blood Pb was associated with an increased risk of IHD (OR 5.68, 95% CI 1.01-17.51) and hypertension (OR 3.37, 95% CI 2.24-5.07) only in women. Additionally, there was a correlation between blood Pb and nutrient intake. This suggest that blood Pb levels may be used as a key predictor of CVD development, and that women are more susceptable to IHD and hypertension associated with Pb exposure.

키워드

참고문헌

  1. S. E. Schober, L. B. Mirel, B. I. Graubard, D. J. Brody & K. M. Flegal. (2006). Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environmental Health Perspectives, 114(10), 1538-1541. DOI : 10.1289/ehp.9123.
  2. CDC. (2012). CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in "Low Level Lead Exposure Harms Children: A Renewed Call of Primary Prevention". Centers for Disease Control and Prevention. https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf
  3. CDC. (2021). Adult Blood Lead Epidemiology and Surveillance (ABLES) Program. Centers for Disease Control and Prevention. https://www.cdc.gov/niosh/topics/ables/description.html
  4. S. E. Oh, G. B. Kim, S. H. Hwang, M. Ha & K. M. Lee. (2017). Longitudinal trends of blood lead levels before and after leaded gasoline regulation in Korea. Environmental Health and Toxicology, 32, e2017019. DOI : 10.5620/eht.e2017019.
  5. CDC. (2018). Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services. Updated Tables. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Volume1_Mar2018.pdf
  6. M. R. Cheung. (2013). Blood lead concentration correlates with all cause, all cancer and lung cancer mortality in adults: A population based study. Asian Pacific Journal of Cancer Prevention, 14(5), 3105-3108. DOI : 10.7314/apjcp.2013.14.5.3105.
  7. B. P. Lanphear, S. Rauch, P. Auinger, R. W. Allen & R. W. Hornung. (2018). Low-level lead exposure and mortality in US adults: A population-based cohort study. The Lancet Public Health, 3(4), e177-e184. DOI : 10.1016/S2468-2667(18)30025-2.
  8. S. E. Schober, L. B. Mirel, B. I. Graubard, D. J. Brody & K. M. Flegal. (2006). Blood lead levels and death from all causes, cardiovascular disease, and cancer: Results from the NHANES III mortality study. Environmental Health Perspectives, 114(10), 1538-1541. DOI : 10.1289/ehp.9123.
  9. G. Byun et al. (2020). Blood Lead Concentrations and Mortality in Korean Adults: the Korea National Health and Nutrition Examination Survey with Mortality Follow-Up. International Journal of Environmental Research and Public Health, 17(18), 6898. DOI : 10.3390/ijerph17186898.
  10. Y. Park & J. Han. (2021). Blood Lead Levels and Cardiovascular Disease Risk: Results from the Korean National Health and Nutrition Examination Survey. International Journal of Environmental Research and Public Health, 18(19), 10315. DOI : 10.3390/ijerph181910315.
  11. M. G. Weisskopf et al. (2009). A prospective study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer in the Department of Veterans Affairs Normative Aging Study. Circulation, 120(12), 1056-1064. DOI : 10.1161/CIRCULATIONAHA.108.827121.
  12. N. H. Hsieh et al. (2017). Anemia risk in relation to lead exposure in lead-related manufacturing. BMC Public Health, 17(1), 389. DOI : 10.1186/s12889-017-4315-7.
  13. A. da Cunha Martins et al. (2015). Effects of lead exposure and genetic polymorphisms on ALAD and GPx activities in Brazilian battery workers. Journal of Toxicol and Environmental Health, Part A, 78(16), 1073-1081. DOI : 10.1080/15287394.2015.1055527.
  14. N. D. Vaziri. (2008). Mechanisms of lead-induced hypertension and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology, 295(2), H454-H465. DOI : 10.1152/ajpheart.00158.2008.
  15. K. D. Eum et al. (2011). Prospective Cohort Study of Lead Exposure and Electrocardiographic Conduction Disturbances in the Department of Veterans Affairs Normative Aging Study. Environmental Heath Perspectives, 119(7), 940-944. DOI : 10.1289/ehp.1003279.
  16. E. Ari, Y. Kaya, H. Demir, E. Asicioglu, S. Keskin. (2011). The Correlation of Serum Trace Elements and Heavy Metals with Carotid Artery Atherosclerosis in Maintenance Hemodialysis Patients. Biological Trace Element Research, 144(1-3), 351-359. DOI : 10.1007/s12011-011-9103-0.
  17. N. B. Jain et al. (2007). Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men: the VA Normative Aging Study. Environmental Health Perspectives, 115(6), 871-875. DOI : 10.1289/ehp.9629.
  18. Agency for Toxic Substances and Disease Registry (ATSDR). (2020). Toxicological profile for Lead. U.S. Department of Health and Human Services, Public Health Service. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22
  19. A. Menke, P. Muntner, V. Batuman, E. K. Silbergeld & E. Guallar. (2006). Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation, 114(13), 1388-1394. DOI : 10.1161/CIRCULATIONAHA.106.628321.
  20. B. K. Lee, J. Ahn, N. S. Kim, C. B. Lee, J. Park & Y. Kim. (2016). Association of Blood Pressure with Exposure to Lead and Cadmium: Analysis of Data from the 2008-2013 Korean National Health and Nutrition Examination Survey. Biological Trace Element Research, 174(1), 40-51. DOI : 10.1007/s12011-016-0699-y.
  21. K. R. Lee, K. D. Ko, I. C. Hwang, H. S. Suh & K. K. Kim. (2017). Association between blood lead levels and blood pressures in a non-smoking healthy Korean population. Postgraduate Medical Journal, 93(1103), 513-518. DOI : 10.1136/postgradmedj-2016-134208.
  22. Y. Aoki, D. J. Brody, K. M. Flegal, T. H. I. Fakhouri, D. A. Axelrad & J. D. Parker. (2016). Blood Lead and Other Metal Biomarkers as Risk Factors for Cardiovascular Disease Mortality. Medicine (Baltimore), 95(1), e2223. DOI : 10.1097/MD.0000000000002223.
  23. R. J. Park et al. (2009). Blood Lead Level as a Predictor of Coronary Artery Disease. Korean Journal of Occupational and Environmental Medicine, 21(1), 38-45. DOI : 10.35371/kjoem.2009.21.1.38.
  24. G. A. Lamas, F. Ujueta & A. Navas-Acien. (2021). Lead and Cadmium as Cardiovascular Risk Factors: The Burden of Proof Has Been Met. Journal of the American Heart Association, 10(10), e018692. DOI : 10.1161/JAHA.120.018692.
  25. A. C. B. de Almeida Lopes et al. (2017). Association between blood lead and blood pressure: A population-based study in Brazilian adults. Environmental Health, 16(1), 27. DOI : 10.1186/s12940-017-0233-5.
  26. E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang & S. Cheng. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation, 137(12), e67-e492. DOI : 10.1161/CIR.0000000000000558.
  27. S. Boykin, M. Carnethon, S. Shrager, H. Ni & M. Whitt-Glover. (2011). Racial/ethnic heterogeneity in the socioeconomic patterning of CVD risk factors: In the United States: The multi-ethnic study of atherosclerosis. Journal of Health Care for the Poor and Underserved, 22(1), 111-127. DOI : 10.1353/hpu.2011.0001.
  28. B. Galobardes, G. D. Smith & J. W. Lynch. (2006). Systematic Review of the Influence of Childhood Socioeconomic Circumstances on Risk for Cardiovascular Disease in Adulthood. Annals of Epidemiology, 16(2), 91-104. DOI : 10.1016/j.annepidem.2005.06.053.
  29. A. Planchart, A. Green, C. Hoyo & C. J. Mattingly. (2018). Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Current Environmental Health Reports, 5(1), 110-124. DOI : 10.1007/s40572-018-0182-3.
  30. X. Wang, B. Mukherjee, S. Batterman, S. D. Harlow & S. K. Park. (2019). Urinary metals and metal mixtures in midlife women: The Study of Women's Health Across the Nation (SWAN). International Journal of Hygiene and Environmental Health, 222(5), 778-789. DOI : 10.1016/j.ijheh.2019.05.002.
  31. T. S. Nawrot & J. A. Staessen. (2006). Low-level environmental exposure to lead unmasked as silent killer. Circulation, 114(13), 1347-1349. DOI : 10.1161/CIRCULATIONAHA.106.650440.
  32. B. P. Lanphear, S. Rauch, P. Auinger, R. W. Allen, R. W. Hornung. (2018). Low-level lead exposure and mortality in US adults: a population-based cohort study. The Lancet Public Health, 3(4), e177-e184. DOI : 10.1016/S2468-2667(18)30025-2.
  33. E. P. Gunderson et al. (2008). Long-term blood pressure changes measured from before to after pregnancy relative to nonparous women. Obstetrics & Gynecology, 112(6), 1294-1302. DOI : 10.1097/AOG.0b013e31818da09b.
  34. K. M. Ross, C. Guardino, C. Dunkel Schetter & C. J. Hobel. (2020). Interactions between race/ethnicity, poverty status, and pregnancy cardio-metabolic diseases in prediction of postpartum cardio-metabolic health. Ethnicity & Health, 25(8), 1145-1160. DOI : 10.1080/13557858.2018.1493433.
  35. E. Giubertoni, L. Bertelli, Y. Bartolacelli, G. Origliani & M. G. Modena. (2013). Parity as predictor of early hypertension during menopausal transition. Journal of Hypertension, 31(3), 501-507, discussion 507. DOI : 10.1097/HJH.0b013e32835c1742.
  36. K. J. Scurrah, A. Lamantia, J. A. Ellis & S. B. Harrap. (2017). Familial Analysis of Epistatic and Sex-Dependent Association of Genes of the Renin-Angiotensin-Aldosterone System and Blood Pressure. Circulation: Cardiovascular Genetics, 10(3), e001595. DOI : 10.1161/CIRCGENETICS.116.001595.
  37. L. Nasreddine et al. (2010). Dietary exposure to essential and toxic trace elements from a Total diet study in an adult Lebanese urban population. Food and Chemical Toxicology, 48(5), 62-69. DOI : 10.1016/j.fct.2010.02.020.
  38. D. R. Tocher, M. B. Betancor, M. Sprague, R. E. Olsen & J. A. Napier. (2019). Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients, 11(1), 89. DOI : 10.3390/nu11010089.
  39. I. Loaiza, M. De Troch & G. De Boeck. (2020). Marine species as safe source of LC-PUFA and micronutrients: Insights in new promising marine food in Peru. Food Chemistry, 321, 126724. DOI : 10.1016/j.foodchem.2020.126724.
  40. A. Gofir, S. Wibowo, M. Hakimi, D. D. Putera, I. Satriotomo & M. Mustofa. (2021). Folic Acid Treatment for Patients with Vascular Cognitive Impairment: A Systematic Review and Meta-Analysis. International Journal of Neuropsychopharmacology, pyab076. DOI : 10.1093/ijnp/pyab076.
  41. M. Gade, N. Comfort & D. B. Re. (2021). Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. Environmental Research, 201, 111558. DOI : 10.1016/j.envres.2021.111558.
  42. R. Ornello et al. (2018). Distribution and Temporal Trends From 1993 to 2015 of Ischemic Stroke Subtypes: A Systematic Review and Meta-Analysis. Stroke, 49(4), 814-819. DOI : 10.1161/STROKEAHA.117.020031.
  43. H. K. Chung, J. Y. Park, Y. Cho & M. J. Shin. (2013). Contribution of dietary patterns to blood heavy metal concentrations in Korean adults: Findings from the Fifth Korea National Health and Nutrition Examination Survey 2010. Food and Chemical Toxicology, 62, 645-652. DOI : 10.1016/j.fct.2013.09.034.
  44. S. Park & B. K. Lee. (2012). Inverse relationship between fat intake and blood lead levels in the Korean adult population in the KNHANES 2007- 2009. Science of The Total Environment, 430, 161-166. DOI : 10.1016/j.scitotenv.2012.05.009.
  45. S. S. Syofyan, A. S. Wahyuni, K. Rusmil & A. Lelo. (2020). The Effects of Calcium Supplementation on Blood Lead Levels and Short-term Memory of Chronically Exposed Children: A Clinical Trial Study. Open Access Macedonian Journal of Medical Sciences, 8(B), 1144-1151. DOI : 10.3889/oamjms.2020.3285.
  46. H. Turgeon O'Brien et al. (2014). Effect of dietary calcium intake on lead exposure in Inuit children attending childcare centres in Nunavik. International Journal of Environmental Health Research, 24, 482-495. DOI : 10.1080/09603123.2013.865714.
  47. Z. Rahman & V. P. Singh. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7), 419. DOI : 10.1007/s10661-019-7528-7.
  48. P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla & D. J. Sutton. (2012). Heavy Metal Toxicity and the Environment: Molecular, Clinical and Environmental Toxicology. 101, Springer, Basel. 133-164. DOI : 10.1007/978-3-7643-8340-4_6.
  49. E. M. Alissa & G. A. Ferns. (2011). Heavy Metal Poisoning and Cardiovascular Disease. Journal of Toxicology, 8(5), 17-26. DOI : 10.1155/2011/870125.
  50. S. Li et al. (2022). Effects of Sub-chronic Lead Exposure on Essential Element Levels in Mice. Biological Trace Element Research, 1-12. DOI : 10.1007/s12011-022-03137-2
  51. L. E. Caulfield, N. Zavaleta, P. Chen, J. Colombo & K. Kannass. (2013). Mineral status of non-anemic Peruvian infants taking an iron and copper syrup with or without zinc from 6 to 18 months of age: a randomized controlled trial. Nutrition, 29, 1336-1341. DOI : 10.1016/j.nut.2013.05.023
  52. Q. Zhai, A. Narbad & W. Chen. (2015). Dietary Strategies for the Treatment of Cadmium and Lead Toxicity. Nutrients, 7(1), 552-557. DOI : 10.3390/nu7010552
  53. X. Ji, H. He, L. Ren, J. Liu & C, Han. (2014). Evaluation of blood zinc, calcium and blood lead levels among children aged 1-36 months. Nutricion hospitalaria, 30(3), 548-551. DOI : 10.3305/nh.2014.30.3.7502.
  54. H. K. An, J. Y. Park & H. J. Yoon. (2015). Association of among alcohol consumption and blood vitamin D and lead concentrations: Based on 2010-2012 Korea national health and nutrition examination survey. Journal of the Korea Academia-Industrial cooperation Society, 16(1), 498-506. DOI : 10.5762/KAIS.2015.16.1.498.
  55. Y. C. Hong et al. (2013). Blood lead level modifies the association between dietary antioxidants and oxidative stress in an urban adult population. British Journal of Nutrition, 109(1), 148-54. DOI : 10.1017/S0007114512000694.
  56. National Institute of Food and Drug Safety Evaluation. (2020). Study on the integrated risk assessment of heavy metals to human health. Seoul : National Institute of Food and Drug Safety Evaluation.