DOI QR코드

DOI QR Code

Oral Administration of Weissella confusa WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice

생쥐 비만모델에서 Weissella confusa WIKIM51 식이에 따른 지방합성 및 에너지 대사 조절로 인한 체지방 감소 효과

  • Received : 2022.02.03
  • Accepted : 2022.02.19
  • Published : 2022.03.28

Abstract

Obesity is closely associated with profound dyslipidemia, insulin resistance, and fatty liver disease. Recent reports have suggested that alterations in gut microbiota can be linked to diet-induced obesity. In this study, the anti-obesity effects of Weissella confusa WIKIM51 isolated from kimchi were investigated, as evidenced by: i) reduced lipid accumulation and downregulated adipogenesis-related genes in 3T3-L1 adipocytes; ii) suppressed gains in body weight and epididymal fat mass; iii) reduced serum lipid levels, for example, triglyceride and total cholesterol; iv) increased serum adiponectin levels and reduced serum leptin levels; v) downregulated lipogenesis and upregulated β-oxidation-related genes in the epididymal fat; and vi) altered microbial communities. The collective evidence indicate the potential value of W. confusa WIKIM51 as a functional food supplement for the prevention and amelioration of obesity.

비만은 지질대사 불균형으로 인한 이상지질혈증과 밀접한 관련이 있으며, 장내 미생물의 군집 및 기능의 변화를 유도하여 장내 미생물 불균형을 초래할 수 있다. 본 연구에서는 민들레 김치에서 분리한 김치 유래 유산균 W. confuse WIKIM51의 항비만 효능을 in vitro와 in vivo에서 평가하였다. 먼저, WIKIM51은 지방세포 분화를 유도한 3T3-L1 세포에서 지방대사 관련 유전자의 발현 조절을 통해 지방구 생성을 억제하였다. 후천적 비만 동물 모델을 이용한 in vivo 실험에서 10주간 W. confusa WIKIM51의 경구 투여는 고지방식이에 의해 유도된 체중 증가를 현저히 감소시켰다. 특히, 부고환 주위 지방량, 조직학적 분석을 통한 지방구의 크기 및 혈중 지표인 TG, TC, adiponectin, 그리고 leptin의 수준이 HFD군에 비해 W. confusa WIKIM51 섭취군에서 유의적으로 개선되었다. 또한 W. confusa WIKIM51 섭취군은 Ppar𝛾, C/EBP𝛼, Srebp-1c, Fas와 같은 지방 생성 및 지방산 합성 관련 유전자의 발현을 억제하였고, 반면 에너지 소비 관련 유전자 Ppar𝛼와 Cpt1의 발현은 증가시켰다. 더 나아가, W. confusa WIKIM51은 고지방식이로 인해 유도된 Firmicutes/Bacteroidetes 비율을 정상식이군의 수준으로 감소시켜 장내미생물의 불균형을 개선시켰다. 이러한 결과들을 종합해 볼 때, W. confusa WIKIM51의 섭취는 고지방식이로 인한 지방 축적을 억제하여 효과적으로 비만을 개선할 수 있으며, 이는 항비만 기능성 소재 및 식품 개발로의 활용이 가능함을 제시한다.

Keywords

Acknowledgement

This work was supported by the Technology development Program (S2844004) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. Leung WY, Thomas GN, Chan JC, Tomlinson B. 2003. Weight management and current options in pharmacotherapy: orlistat and sibutramine. Clin. Ther. 25: 58-80. https://doi.org/10.1016/S0149-2918(03)90009-9
  2. Lau CW, Douketis JD, Morrison KM, Hramiak IM, Sharma AM, Ur E. 2007. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. CMAJ. 176: S1-S13.
  3. Krauss RM. 1998. Triglycerides and atherogenic lipoproteins: rationale for lipid management. Am. J. Med. 105: 58S-62S. https://doi.org/10.1016/S0002-9343(98)00213-7
  4. Golan M, Fainaru M, Weizman A. 1998. Role of behavior modification in the treatment of childhood obesity with the parents as the exclusive agent of change. Int. J. Obes. Relat. Metab. Disord. 22: 1217-1224. https://doi.org/10.1038/sj.ijo.0800749
  5. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. 2019. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv. Nutr. 10: S17-S30. https://doi.org/10.1093/advances/nmy078
  6. Sommer F, Backhed F. 2013. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11: 227-238. https://doi.org/10.1038/nrmicro2974
  7. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, et al. 2006. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta 1761: 736-744. https://doi.org/10.1016/j.bbalip.2006.05.007
  8. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022-1023. https://doi.org/10.1038/4441022a
  9. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 104: 979-984. https://doi.org/10.1073/pnas.0605374104
  10. Lee JY, Bae ES, Kim HY, Lee KM, Yoon SS, Lee DC. 2021. High-fatdiet-induced oxidative stress linked to the increased colonization of Lactobacillus sakei in an obese population. Microbiol. Spectr. 9: e0007421. https://doi.org/10.1128/Spectrum.00074-21
  11. Jia W, Li H, Zhao L, Nicholson JK. 2008. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug. Discov. 7: 123-129. https://doi.org/10.1038/nrd2505
  12. Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, et al. 2012. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef. Microbes 3: 13-22. https://doi.org/10.3920/BM2011.0046
  13. Kadooka Y, Sato M, Imaizumi K, Ogawa A. 2010. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64: 636-643. https://doi.org/10.1038/ejcn.2010.19
  14. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high-fat diet-fed mice. ISME J. 9: 1-15. https://doi.org/10.1038/ismej.2014.99
  15. Park KY, Jeong JK, Lee YE, Daily JW. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food. 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  16. Choi IK, Jung SH, Kim BJ, Park SY, Kim J, Han HU. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253. https://doi.org/10.1023/A:1026050410724
  17. Yun JY, Jeong JK, Moon SH, Park KY. 2014. Effects of brined baechu cabbage and seasoning on fermentation of kimchi. J. Korean Soc. Food Sci. Nutr. 43: 1081-1087. https://doi.org/10.3746/JKFN.2014.43.7.1081
  18. Ahn SB, Park HE, Lee SM, Kim SY, Shon MY, Lee WK. 2013. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. J. Biomed. Res. 14: 206-211. https://doi.org/10.12729/jbr.2013.14.4.206
  19. Lim SK, Kwon MS, Lee J, Oh YJ, Jang JY, Lee JH, et al. 2017. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci. Rep. 7: 40040. https://doi.org/10.1038/srep40040
  20. Kwon MS, Lim SK, Jang JY, Lee J, Park HK, Kim N, et al. 2018. Lactobacillus sakei WIKIM30 ameliorates atopic dermatitis-like skin lesions by inducing regulatory T cells and altering gut microbiota structure in mice. Front. Immunol. 9: 1905. https://doi.org/10.3389/fimmu.2018.01905
  21. Kasturi R, Joshi VC. 1982. Hormonal regulation of stearoyl coenzyme A desaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. J. Biol. Chem. 257: 12224. https://doi.org/10.1016/S0021-9258(18)33704-9
  22. Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104: 531. https://doi.org/10.1016/S0092-8674(01)00240-9
  23. Aller R, De Luis DA, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, et al. 2011. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 15: 1090-1095.
  24. Alison NT, Laurence M, Charles RM. 2014. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 40: 833-842. https://doi.org/10.1016/j.immuni.2014.05.014
  25. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Human gut microbes associated with obesity. Nature 444: 1022-1023. https://doi.org/10.1038/4441022a